25 research outputs found

    Describing dynamical fluctuations and genuine correlations by Weibull regularity

    Full text link
    The Weibull parametrization of the multiplicity distribution is used to describe the multidimensional local fluctuations and genuine multiparticle correlations measured by OPAL in the large statistics e+e−→Z0→hadronse^{+}e^{-} \to Z^{0} \to hadrons sample. The data are found to be well reproduced by the Weibull model up to higher orders. The Weibull predictions are compared to the predictions by the two other models, namely by the negative binomial and modified negative binomial distributions which mostly failed to fit the data. The Weibull regularity, which is found to reproduce the multiplicity distributions along with the genuine correlations, looks to be the optimal model to describe the multiparticle production process.Comment: 10 pages, 2 figure

    Effective-energy universality approach describing total multiplicity centrality dependence in heavy-ion collisions

    Full text link
    The recently proposed participant dissipating effective-energy approach is applied to describe the dependence on centrality of the multiplicity of charged particles measured in heavy-ion collisions at the collision energies up to the highest LHC energy of 5 TeV. The effective-energy approach relates multihadron production in different types of collisions, by combining, under the proper collision energy scaling, the constituent quark picture with Landau relativistic hydrodynamics. The measurements are shown to be well described in terms of the centrality-dependent effective energy of participants and an explanation of the differences in the measurements at RHIC and LHC are given by means of the recently introduced hypothesis of the energy-balanced limiting fragmentation scaling. A similarity between the centrality data and the data from most central collisions is proposed pointing to the central character of participant interactions independent of centrality. The findings complement our recent investigations of the similar midrapidity pseudorapidity density measurements extending the description to the full pseudorapidity range in view of the considered similarity of multihadron production in nucleon interactions and heavy-ion collisions.Comment: Same as published versio

    Event patterns from negative pion spectra in proton-proton and nucleus-nucleus collisions at SPS

    Full text link
    Rapidity-dependent transverse momentum spectra of negatively charged pions measured at different rapidities in proton-proton collisions at the Super Proton Synchrotron (SPS) at various energies within its Beam Energy Scan (BES) program are investigated by using one- and two-component standard distributions where the chemical potential and spin property of particles are implemented. The rapidity spectra are described by a double-Gaussian distribution. At the stage of kinetic freeze-out, the event patterns are structured by the scatter plots in the three-dimensional subspaces of velocity, momentum and rapidity. The results of the studies of the rapidity-independent transverse mass spectra measured at mid-rapidity in proton-proton collisions are compared with those based on the similar transverse mass spectra measured in the most central beryllium-beryllium, argon-scandium and lead-lead collisions from the SPS at its BES energies.Comment: 17 pages, 9 figure

    Cosmological analogies in the search for new physics in high-energy collisions

    Full text link
    In this paper, analogies between multiparticle production in high-energy collisions and the time evolution of the early universe are discussed. A common explanation is put forward under the assumption of an unconventional early state: a rapidly expanding universe before recombination (last scattering surface), followed by the CMB, later evolving up to present days, versus the formation of hidden/dark states in hadronic collisions followed by a conventional QCD parton shower yielding final-state particles. In particular, long-range angular correlations are considered pointing out deep connections between the two physical cases potentially useful for the discovery of new physics.Comment: 9 pages, 5 figure

    Photon mass limits from fast radio bursts

    Get PDF
    International audienceThe frequency-dependent time delays in fast radio bursts (FRBs) can be used to constrain the photon mass, if the FRB redshifts are known, but the similarity between the frequency dependences of dispersion due to plasma effects and a photon mass complicates the derivation of a limit on mÎł. The dispersion measure (DM) of FRB 150418 is known to ∌0.1%, and there is a claim to have measured its redshift with an accuracy of ∌2%, but the strength of the constraint on mÎł is limited by uncertainties in the modelling of the host galaxy and the Milky Way, as well as possible inhomogeneities in the intergalactic medium (IGM). Allowing for these uncertainties, the recent data on FRB 150418 indicate that mÎłâ‰Č1.8×10−14 eVc−2 (3.2×10−50 kg), if FRB 150418 indeed has a redshift z=0.492 as initially reported. In the future, the different redshift dependences of the plasma and photon mass contributions to DM can be used to improve the sensitivity to mÎł if more FRB redshifts are measured. For a fixed fractional uncertainty in the extra-galactic contribution to the DM of an FRB, one with a lower redshift would provide greater sensitivity to mÎł

    Introduction to a New Open Access Journal by MDPI: Physics

    No full text
    Herewith, we launch a new MDPI journal, Physics, for which I am honored to serve as Editor-in-Chief. [...

    Searching for new physics with three-particle correlations in pppp collisions at the LHC

    No full text
    New phenomena involving pseudorapidity and azimuthal correlations among final state particles in pppp collisions at the LHC can hint at the existence of hidden sectors beyond the Standard Model. In this paper we rely on a correlated-cluster picture of multiparticle production, which was shown to account for the ridge effect, to assess the effect of a hidden sector on three-particle correlations concluding that there is a potential signature of new physics that can be directly tested by experiments using well-known techniques.New phenomena involving pseudorapidity and azimuthal correlations among final-state particles in pp collisions at the LHC can hint at the existence of hidden sectors beyond the Standard Model. In this paper we rely on a correlated-cluster picture of multiparticle production, which was shown to account for the ridge effect, to assess the effect of a hidden sector on three-particle correlations concluding that there is a potential signature of new physics that can be directly tested by experiments using well-known techniques
    corecore