4,300 research outputs found

    Saturated gain spectrum of VECSELs determined by transient measurement of lasing onset

    Get PDF
    We describe time-resolved measurements of the evolution of the spectrum of radiation emitted by an optically-pumped continuous-wave InGaAs-GaAs quantum well laser, recorded as lasing builds up from noise to steady state. We extract a fitting parameter corresponding to the gain dispersion of the parabolic spectrum equal to ?79 ± 30 fs2 and ?36 ± 6 fs2 for a resonant and anti-resonant structure, respectively. Furthermore the recorded evolution of the spectrum allows for the calculation of an effective FWHM gain bandwidth for each structure, of 11 nm and 18 nm, respectively

    Book Reviews

    Get PDF

    Assessing the Dream-Lag Effect for REM and NREM Stage 2 Dreams

    Get PDF
    This study investigates evidence, from dream reports, for memory consolidation during sleep. It is well-known that events andmemories from waking life can be incorporated into dreams. These incorporations can be a literal replication of what occurredin waking life, or, more often, they can be partial or indirect. Two types of temporal relationship have been found tocharacterize the time of occurrence of a daytime event and the reappearance or incorporation of its features in a dream. Thesetemporal relationships are referred to as the day-residue or immediate incorporation effect, where there is the reappearance offeatures from events occurring on the immediately preceding day, and the dream-lag effect, where there is the reappearanceof features from events occurring 5–7 days prior to the dream. Previous work on the dream-lag effect has used spontaneoushome recalled dream reports, which can be from Rapid Eye Movement Sleep (REM) and from non-Rapid Eye Movement Sleep(NREM). This study addresses whether the dream-lag effect occurs only for REM sleep dreams, or for both REM and NREM stage2 (N2) dreams. 20 participants kept a daily diary for over a week before sleeping in the sleep laboratory for 2 nights. REM andN2 dreams collected in the laboratory were transcribed and each participant rated the level of correspondence between everydream report and every diary record. The dream-lag effect was found for REM but not N2 dreams. Further analysis indicatedthat this result was not due to N2 dream reports being shorter, in terms of number of words, than the REM dream reports.These results provide evidence for a 7-day sleep-dependent non-linear memory consolidation process that is specific to REMsleep, and accord with proposals for the importance of REM sleep to emotional memory consolidation

    APM 08279+5255: an ultraluminous BAL quasar at a redshift z=3.87

    Full text link
    We report on the discovery of a highly luminous, broad absorption line quasar at a redshift of z=3.87z=3.87 which is positionally coincident, within one arcsecond, with the IRAS FSC source F08279+5255. A chance alignment of the quasar and the IRAS source is extremely unlikely and we argue that the optical and FIR flux are different manifestations of the same object. With an R-band magnitude of 15.2, and an IRAS 60\mum flux of 0.51\jy, APM 08279+5255 is (apparently) easily the most intrinsically luminous object known, with L_{Bol}\sim5\times10^{15}L_{\odot}}. Imaging suggests that gravitational lensing may play a role in amplifying the intrinsic properties of the system. The optical spectrum of the quasar clearly reveals the presence of three potential lensing galaxies, \mg absorption systems at z=1.18z=1.18 and z=1.81z=1.81, and a \ly absorption system at z=3.07z=3.07. We estimate the total amplification of the optical component to be 40\approx40, but, due to the larger scale of the emitting region, would expect the infrared amplification to be significantly less. Even making the conservative assumption that all wavelengths are amplified by a factor 40, APM 08279+5255 still possesses a phenomenal luminosity of \simgt 10^{14L_{\odot}}, indicating that it belongs to a small, but significant population of high--redshift, hyperluminous objects with copious infrared emission.Comment: 15 Pages with Four figures. Accepted for publication in the Astrophysical Journa

    \u3cem\u3eIn Situ\u3c/em\u3e Nanomechanical Testing in Focused Ion Beam and Scanning Electron Microscopes

    Get PDF
    The recent interest in size-dependent deformation of micro- and nanoscale materials has paralleled both technological miniaturization and advancements in imaging and small-scale mechanical testing methods. Here we describe a quantitative in situ nanomechanical testing approach adapted to a dualbeam focused ion beam and scanning electron microscope. A transducer based on a three-plate capacitor system is used for high-fidelity force and displacement measurements. Specimen manipulation, transfer, and alignment are performed using a manipulator, independently controlled positioners, and the focused ion beam. Gripping of specimens is achieved using electron-beam assisted Pt-organic deposition. Local strain measurements are obtained using digital image correlation of electron images taken during testing. Examples showing results for tensile testing of single-crystalline metallic nanowires and compression of nanoporous Au pillars will be presented in the context of size effects on mechanical behavior and highlight some of the challenges of conducting nanomechanical testing in vacuum environments

    Expansion microscopy of C. elegans.

    Get PDF
    Funder: John DoerrFunder: The Open Philanthropy ProjectFunder: Lisa YangWe recently developed expansion microscopy (ExM), which achieves nanoscale-precise imaging of specimens at ~70 nm resolution (with ~4.5x linear expansion) by isotropic swelling of chemically processed, hydrogel-embedded tissue. ExM of C. elegans is challenged by its cuticle, which is stiff and impermeable to antibodies. Here we present a strategy, expansion of C. elegans (ExCel), to expand fixed, intact C. elegans. ExCel enables simultaneous readout of fluorescent proteins, RNA, DNA location, and anatomical structures at resolutions of ~65-75 nm (3.3-3.8x linear expansion). We also developed epitope-preserving ExCel, which enables imaging of endogenous proteins stained by antibodies, and iterative ExCel, which enables imaging of fluorescent proteins after 20x linear expansion. We demonstrate the utility of the ExCel toolbox for mapping synaptic proteins, for identifying previously unreported proteins at cell junctions, and for gene expression analysis in multiple individual neurons of the same animal

    The emission by dust and stars of nearby galaxies in the Herschel KINGFISH survey

    Get PDF
    Using new far-infrared imaging from the Herschel Space Observatory with ancillary data from ultraviolet (UV) to submillimeter wavelengths, we estimate the total emission from dust and stars of 62 nearby galaxies in the KINGFISH survey in a way that is as empirical and model independent as possible. We collect and exploit these data in order to measure from the spectral energy distributions (SEDs) precisely how much stellar radiation is intercepted and re-radiated by dust, and how this quantity varies with galaxy properties. By including SPIRE data, we are more sensitive to emission from cold dust grains than previous analyses at shorter wavelengths, allowing for more accurate estimates of dust temperatures and masses. The dust/stellar flux ratio, which we measure by integrating the SEDs, has a range of nearly three decades (from 10(-2.2) to 10(0.5)). The inclusion of SPIRE data shows that estimates based on data not reaching these far-IR wavelengths are biased low by 17% on average. We find that the dust/stellar flux ratio varies with morphology and total infrared (IR) luminosity, with dwarf galaxies having faint luminosities, spirals having relatively high dust/stellar ratios and IR luminosities, and some early types having low dust/stellar ratios. We also find that dust/stellar flux ratios are related to gas-phase metallicity ((log(f(dust)/f(*)) over bar) = -0.66 +/- 0.08 and -0.22 +/- 0.12 for metal-poor and intermediate-metallicity galaxies, respectively), while the dust/stellar mass ratios are less so (differing by approximate to 0.2 dex); the more metal-rich galaxies span a much wider range of the flux ratios. In addition, the substantial scatter between dust/stellar flux and dust/stellar mass indicates that the former is a poor proxy of the latter. Comparing the dust/stellar flux ratios and dust temperatures, we also show that early types tend to have slightly warmer temperatures (by up to 5 K) than spiral galaxies, which may be due to more intense interstellar radiation fields, or possibly to different dust grain compositions. Finally, we show that early types and early-type spirals have a strong correlation between the dust/stellar flux ratio and specific star formation rate, which suggests that the relatively bright far-IR emission of some of these galaxies is due to ongoing (if limited) star formation as well as to the radiation field from older stars, which is heating the dust grains
    corecore