1,777 research outputs found

    A dynamic Bayesian nonlinear mixed-effects model of HIV response incorporating medication adherence, drug resistance and covariates

    Full text link
    HIV dynamic studies have contributed significantly to the understanding of HIV pathogenesis and antiviral treatment strategies for AIDS patients. Establishing the relationship of virologic responses with clinical factors and covariates during long-term antiretroviral (ARV) therapy is important to the development of effective treatments. Medication adherence is an important predictor of the effectiveness of ARV treatment, but an appropriate determinant of adherence rate based on medication event monitoring system (MEMS) data is critical to predict virologic outcomes. The primary objective of this paper is to investigate the effects of a number of summary determinants of MEMS adherence rates on virologic response measured repeatedly over time in HIV-infected patients. We developed a mechanism-based differential equation model with consideration of drug adherence, interacted by virus susceptibility to drug and baseline characteristics, to characterize the long-term virologic responses after initiation of therapy. This model fully integrates viral load, MEMS adherence, drug resistance and baseline covariates into the data analysis. In this study we employed the proposed model and associated Bayesian nonlinear mixed-effects modeling approach to assess how to efficiently use the MEMS adherence data for prediction of virologic response, and to evaluate the predicting power of each summary metric of the MEMS adherence rates.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS376 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Beyond the looking glass: recent advances in understanding the impact of environmental exposures on neuropsychiatric disease

    Get PDF
    The etiologic pathways leading to neuropsychiatric diseases remain poorly defined. As genomic technologies have advanced over the past several decades, considerable progress has been made linking neuropsychiatric disorders to genetic underpinnings. Interest and consideration of nongenetic risk factors (e.g., lead exposure and schizophrenia) have, in contrast, lagged behind heritable frameworks of explanation. Thus, the association of neuropsychiatric illness to environmental chemical exposure, and their potential interactions with genetic susceptibility, are largely unexplored. In this review, we describe emerging approaches for considering the impact of chemical risk factors acting alone and in concert with genetic risk, and point to the potential role of epigenetics in mediating exposure effects on transcription of genes implicated in mental disorders. We highlight recent examples of research in nongenetic risk factors in psychiatric disorders that point to potential shared biological mechanisms—synaptic dysfunction, immune alterations, and gut–brain interactions. We outline new tools and resources that can be harnessed for the study of environmental factors in psychiatric disorders. These tools, combined with emerging experimental evidence, suggest that there is a need to broadly incorporate environmental exposures in psychiatric research, with the ultimate goal of identifying modifiable risk factors and informing new treatment strategies for neuropsychiatric disease

    Virologic Response, Early HIV-1 Decay, and Maraviroc Pharmacokinetics With the Nucleos(t)ide-Free Regimen of MaravIroc Plus Darunavir/Ritonavir in a Pilot Study

    Get PDF
    To address the need for nucleos(t)ide reverse transcriptase inhibitor (NRTI)-sparing regimens, we explored the virologic and pharmacokinetic characteristics of maraviroc plus ritonavir-boosted darunavir in a single-arm, open-label, 96-week study

    Population Pharmacokinetic Modeling of Dolutegravir to Optimize Pediatric Dosing in HIV-1-Infected Infants, Children, and Adolescents

    Get PDF
    Background and Objective: HIV treatment options remain limited in children. Dolutegravir is a potent and well-tolerated, once-daily HIV-1 integrase inhibitor recommended for HIV-1 infection in both adults and children down to 4 weeks of age. To support pediatric dosing of dolutegravir in children, we used a population pharmacokinetic model with dolutegravir data from the P1093 and ODYSSEY clinical trials. The relationship between dolutegravir exposure and selected safety endpoints was also evaluated. // Methods: A population pharmacokinetic model was developed with data from P1093 and ODYSSEY to characterize the pharmacokinetics and associated variability and to evaluate the impact of pharmacokinetic covariates. The final population pharmacokinetic model simulated exposures across weight bands, doses, and formulations that were compared with established adult reference data. Exploratory exposure–safety analyses evaluated the relationship between dolutegravir pharmacokinetic parameters and selected clinical laboratory parameters and adverse events. // Results: A total of N = 239 participants were included, baseline age ranged from 0.1 to 17.5 years, weight ranged from 3.9 to 91 kg, 50% were male, and 80% were black. The final population pharmacokinetic model was a one-compartment model with first-order absorption and elimination, enabling predictions of dolutegravir concentrations in the pediatric population across weight bands and doses/formulations. The predicted geometric mean trough concentration was comparable to the adult value following a 50-mg daily dose of dolutegravir for all weight bands at recommended doses. Body weight, age, and formulation were significant predictors of dolutegravir pharmacokinetics in pediatrics. Additionally, during an exploratory exposure–safety analysis, no correlation was found between dolutegravir exposure and selected safety endpoints or adverse events. // Conclusions: The dolutegravir dosing in children ≄ 4 weeks of age on an age/weight-band basis provides comparable exposures to those historically observed in adults. Observed pharmacokinetic variability was higher in this pediatric population and no additional safety concerns were observed. These results support the weight-banded dosing of dolutegravir in pediatric participants currently recommended by the World Health Organization

    Fish Oil and Fenofibrate for the Treatment of Hypertriglyceridemia in HIV-Infected Subjects on Antiretroviral Therapy: Results of ACTG A5186

    Get PDF
    Fish oil has been shown to reduce serum triglyceride (TG) concentrations. In HIV-infected patients on antiretroviral therapy, high TG concentrations likely contribute to increased risk of cardiovascular disease. AIDS Clinical Trials Group A5186 examined the safety and efficacy of fish oil plus fenofibrate in subjects not achieving serum TG levels ≀200 mg/dL with either agent alone

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be ∌24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with ÎŽ<+34.5∘\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r∌27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie
    • 

    corecore