17 research outputs found

    Understanding hydraulic property rights creation re-creation and de-creation: A case study of Lorraine and Fumukwe villages Limpopo basin

    Get PDF
    <div><p>Abstract Background: The uninterrupted use of oral anticoagulation (OAC) with vitamin K antagonists (VKAs) for electrophysiology procedures has been more and more recommended. The clinical practice in our service recommends the continuous use of these drugs for atrial flutter ablation. There is little evidence as to the uninterrupted use of non-vitamin K antagonist oral anticoagulants (NOACs) in this scenario. Objective: To compare the rates of complications related with the uninterrupted use of different types of oral anticoagulants in patients referred to atrial flutter (AFL) ablation. Methods: Historical, single-center cohort of ablation procedures by AFL conducted from November 2012 to April 2016. The primary outcome was the occurrence of hemorrhagic or embolic complication during the procedure. The secondary outcome was the occurrence of stroke or transient ischemic attack (TIA) in follow-up. The statistical significance level was 5%. Results: There were 288 ablations per AFL; 154 were carried out with the uninterrupted use of OAC (57.8% with VKA and 42.2% with NOAC). Mean age was 57 ± 13 years. The rate of hemorrhagic complication during the procedure was 3% in each group (p = NS). The rate of stroke/TIA was, respectively, of 56/1,000 people-year in the VKA group against zero/1,000 people-year in the NOAC group (p = 0.02). Conclusion: In our population there were no hemorrhagic complications regarding the procedure of OAC use uninterruptedly, including NOACs. There was higher occurrence of stroke/TIA in the follow-up of the group of patients undergoing VKAs; however, this difference may not only be a result of the type of OAC used.</p></div

    Predicting the Proteins of Angomonas deanei, Strigomonas culicis and Their Respective Endosymbionts Reveals New Aspects of the Trypanosomatidae Family

    Get PDF
    Endosymbiont-bearing trypanosomatids have been considered excellent models for the study of cell evolution because the host protozoan co-evolves with an intracellular bacterium in a mutualistic relationship. Such protozoa inhabit a single invertebrate host during their entire life cycle and exhibit special characteristics that group them in a particular phylogenetic cluster of the Trypanosomatidae family, thus classified as monoxenics. in an effort to better understand such symbiotic association, we used DNA pyrosequencing and a reference-guided assembly to generate reads that predicted 16,960 and 12,162 open reading frames (ORFs) in two symbiont-bearing trypanosomatids, Angomonas deanei (previously named as Crithidia deanei) and Strigomonas culicis (first known as Blastocrithidia culicis), respectively. Identification of each ORF was based primarily on TriTrypDB using tblastn, and each ORF was confirmed by employing getorf from EMBOSS and Newbler 2.6 when necessary. the monoxenic organisms revealed conserved housekeeping functions when compared to other trypanosomatids, especially compared with Leishmania major. However, major differences were found in ORFs corresponding to the cytoskeleton, the kinetoplast, and the paraflagellar structure. the monoxenic organisms also contain a large number of genes for cytosolic calpain-like and surface gp63 metalloproteases and a reduced number of compartmentalized cysteine proteases in comparison to other TriTryp organisms, reflecting adaptations to the presence of the symbiont. the assembled bacterial endosymbiont sequences exhibit a high A+T content with a total of 787 and 769 ORFs for the Angomonas deanei and Strigomonas culicis endosymbionts, respectively, and indicate that these organisms hold a common ancestor related to the Alcaligenaceae family. Importantly, both symbionts contain enzymes that complement essential host cell biosynthetic pathways, such as those for amino acid, lipid and purine/pyrimidine metabolism. These findings increase our understanding of the intricate symbiotic relationship between the bacterium and the trypanosomatid host and provide clues to better understand eukaryotic cell evolution.Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)ERC AdG SISYPHEUniv Fed Rio de Janeiro, Inst Biofis Carlos Chagas Filho, Lab Ultraestrutura Celular Hertha Meyer, BR-21941 Rio de Janeiro, BrazilUniv Fed Rio de Janeiro, Inst Biofis Carlos Chagas Filho, Lab Metab Macromol Firmino Torres de Castro, BR-21941 Rio de Janeiro, BrazilLab Bioinformat, Lab Nacl Computacao Cient, Rio de Janeiro, BrazilINRIA Grenoble Rhone Alpes, BAMBOO Team, Villeurbanne, FranceUniv Lyon 1, CNRS, UMR5558, Lab Biometrie & Biol Evolut, F-69622 Villeurbanne, FranceUniv Estadual Campinas, Inst Biol, Dept Genet Evolucao & Bioagentes, São Paulo, BrazilUniv São Paulo, Fac Ciencias Farmaceut Ribeirao Preto, Dept Ciencias Farmaceut, São Paulo, BrazilLab Nacl Ciencia & Tecnol Bioetano, São Paulo, BrazilUniv Fed Minas Gerais, Inst Ciencias Biol, Dept Bioquim & Imunol, Belo Horizonte, MG, BrazilUniv Fed Goias, Inst Ciencias Biol, Mol Biol Lab, Goiania, Go, BrazilFundacao Oswaldo Cruz, Inst Carlos Chagas, Lab Biol Mol Tripanossomatideos, Curitiba, Parana, BrazilFundacao Oswaldo Cruz, Inst Carlos Chagas, Lab Genom Func, Curitiba, Parana, BrazilUniv Estadual Campinas, Ctr Pluridisciplinar Pesquisas Quim Biol & Agr, São Paulo, BrazilUniv Fed Minas Gerais, Inst Ciencias Biol, Dept Parasitol, Belo Horizonte, MG, BrazilUniv Fed Santa Catarina, Dept Microbiol Imunol & Parasitol, Ctr Ciencias Biol, Lab Protozool & Bioinformat, Florianopolis, SC, BrazilUniv Fed Vicosa, Dept Bioquim & Biol Mol, Ctr Ciencias Biol & Saude, Vicosa, MG, BrazilInst Butantan, Lab Especial Ciclo Celular, São Paulo, BrazilUniv São Paulo, Dept Biol, Fac Filosofia Ciencias & Letras Ribeirao Preto, São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Microbiol Imunol & Parasitol, São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Microbiol Imunol & Parasitol, São Paulo, BrazilWeb of Scienc

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Thermal and mechanical behavior of injection molded Poly(3-hydroxybutyrate)/Poly(epsilon-caprolactone) blends

    No full text
    Aiming the development of high-performance biodegradable polymer materials, the properties and the processing behavior of poly(3-hydroxybutyrate), P(3HB), and their blends with poly(epsilon-caprolactone), PCL, have been investigated. The P(3HB) sample, obtained from sugarcane, had a molecular weight of 3.0 x 10(5) g.mol¹, a crystallinity degree of 60%, a glass transition temperature (Tg), at - 0.8 &deg;C, and a melting temperature at 171 &deg;C. The molecular weight of PCL was 0.8 x 10(5) g.mol-1. Specimens of 70/30 wt. (%) P(3HB)/PCL blends obtained by injection molding showed tensile strength of 21.9 (&plusmn; 0.4) MPa, modulus of 2.2 (&plusmn; 0.3) GPa, and a relatively high elongation at break, 87 (&plusmn; 20)%. DSC analyses of this blend showed two Tg&acute;s, at - 10.6 &deg;C for the P(3HB) matrix, and at - 62.9 &deg;C for the PCL domains. The significant decrease on the Tg of P(3HB) evidences a partial miscibility of PCL in P(3HB). According to the Fox equation, the new Tg corresponds to a 92/8 wt. (%) P(3HB)/PCL composition

    Peptidomics of Three Bothrops Snake Venoms: Insights Into the Molecular Diversification of Proteomes and Peptidomes

    No full text
    Snake venom proteomes/peptidomes are highly complex and maintenance of their integrity within the gland lumen is crucial for the expression of toxin activities. There has been considerable progress in the field of venom proteomics, however, peptidomics does not progress as fast, because of the lack of comprehensive venom sequence databases for analysis of MS data. Therefore, in many cases venom peptides have to be sequenced manually by MS/MS analysis or Edman degradation. This is critical for rare snake species, as is the case of Bothrops cotiara (BC) and B. fonsecai (BF), which are regarded as near threatened with extinction. in this study we conducted a comprehensive analysis of the venom peptidomes of BC, BF, and B. jararaca (BJ) using a combination of solid-phase extraction and reversed-phase HPLC to fractionate the peptides, followed by nano-liquid chromatography-tandem MS (LC-MS/MS) or direct infusion electrospray ionization-(ESI)-MS/MS or MALDI-MS/MS analyses. We detected marked differences in the venom peptidomes and identified peptides ranging from 7 to 39 residues in length by de novo sequencing. Forty-four unique sequences were manually identified, out of which 30 are new peptides, including 17 bradykinin-potentiating peptides, three poly-histidine-poly-glycine peptides and interestingly, 10 L-amino acid oxidase fragments. Some of the new bradykinin-potentiating peptides display significant bradykinin potentiating activity. Automated database search revealed fragments from several toxins in the peptidomes, mainly from L-amino acid oxidase, and allowed the determination of the peptide bond specificity of proteinases and amino acid occurrences for the P4-P4' sites. We also demonstrate that the venom lyophilization/resolubilization process greatly increases the complexity of the peptidome because of the imbalance caused to the venom proteome and the consequent activity of proteinases on venom components. the use of proteinase inhibitors clearly showed different outcomes in the peptidome characterization and suggested that degradomic-peptidomic analysis of snake venoms is highly sensitive to the conditions of sampling procedures. Molecular & Cellular Proteomics 11: 10.1074/mcp.M112.019331, 1245-1262, 2012.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Rede de Proteoma de São PauloCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Inst Butantan, Lab Especial Toxinol Aplicada, CAT Cepid, BR-05503000 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Ciencias Exatas & Terra, Diadema, BrazilInst Butantan, Lab Herpetol, BR-05503000 São Paulo, BrazilUniv São Paulo, Inst Ciencias Biomed, BR-05508 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Ciencias Exatas & Terra, Diadema, BrazilFAPESP: 07/54626-7FAPESP: 98/14307-9FAPESP: 09/15932-0FAPESP: 11/10468-4Rede de Proteoma de São Paulo: FAPESP 2004/14846-0/FINEP01.07.0290.00Web of Scienc
    corecore