36 research outputs found

    Prediction, prevention, and management of right ventricular failure after left ventricular assist device implantation: A comprehensive review

    Get PDF
    Heart failure; Left ventricular assist device; Right ventricleInsuficiencia cardiaca; Dispositivo de asistencia ventricular izquierda; Ventrículo derechoInsuficiència cardíaca; Dispositiu d'assistència ventricular esquerre; Ventricle dretLeft ventricular assist devices (LVADs) are increasingly common across the heart failure population. Right ventricular failure (RVF) is a feared complication that can occur in the early post-operative phase or during the outpatient follow-up. Multiple tools are available to the clinician to carefully estimate the individual risk of developing RVF after LVAD implantation. This review will provide a comprehensive overview of available tools for RVF prognostication, including patient-specific and right ventricle (RV)-specific echocardiographic and hemodynamic parameters, to provide guidance in patient selection during LVAD candidacy. We also offer a multidisciplinary approach to the management of early RVF, including indications and management of right ventricular assist devices in this setting to provide tools that help managing the failing RV.ER-A has received funding from the Spanish Society of Cardiology (Magda Heras grant, SEC/MHE-MOV-INT 21/001). DB is supported by TRANSFORM HF

    Seed tolerance to deterioration in arabidopsis is affected by virus infection

    Full text link
    [EN] Seed longevity is the period during which the plant seed is able to germinate. This property is strongly influenced by environment conditions experienced by seeds during their formation and storage. In the present study we have analyzed how the biotic stress derived from the infection of Cauliflower mosaic virus (CaMV), Turnip mosaic virus (TuMV), Cucumber mosaic virus (CMV) and Alfalfa mosaic virus (AMV) affects seed tolerance to deterioration measuring germination rates after an accelerated aging treatment. Arabidopsis wild type plants infected with AMV and CMV rendered seeds with improved tolerance to deterioration when compared to the non -inoculated plants. On the other hand, CaMV infection generated seeds more sensitive to deterioration. No seeds were obtained from TuMV infected plants. Similar pattern of viral effects was observed in the double mutant athb22 athb25, which is more sensitive to accelerated seed aging than wild type. However, we observed a significant reduction of the seed germination for CMV (65% vs 55%) and healthy (50% vs 30%) plants in these mutants. The seed quality differences were overcomed using the A. thaliana athb25-1D dominant mutant, which over accumulated gibberellic acid (GA), except for TuMV which generated some siliques with low seed tolerance to deterioration. For AMV and TuMV (in athb25-1D), the seed quality correlated with the accumulation of the messengers of the gibberellin 3-oxidase family, the mucilage of the seed and the GA1. For CMV and CaMV it was not a good correlation suggesting that other factors are affecting seed viability. (C) 2017 Elsevier Masson SAS. All rights reserved.We thank L. Corachan and I. Martinez for their excellent technical assistance. This work was supported by grant BI02014-54862-R from the Spanish Direccion General de Investigacion Cientifica y Tecnica (DGICYT) and the Prometeo Program GV2014/010 from the Generalitat Valenciana.Bueso Rodenas, E.; Serrano Salom, R.; Pallas, V.; Sanchez Navarro, JA. (2017). Seed tolerance to deterioration in arabidopsis is affected by virus infection. Plant Physiology and Biochemistry. 116:1-8. https://doi.org/10.1016/j.plaphy.2017.04.020S1811

    Uncovering salt tolerance mechanisms in pepper plants: a physiological and transcriptomic approach.

    Get PDF
    [EN] Background Pepper is one of the most cultivated crops worldwide, but is sensitive to salinity. This sensitivity is dependent on varieties and our knowledge about how they can face such stress is limited, mainly according to a molecular point of view. This is the main reason why we decided to develop this transcriptomic analysis. Tolerant and sensitive accessions, respectively called A25 and A6, were grown for 14 days under control conditions and irrigated with 70 mM of NaCl. Biomass, different physiological parameters and differentially expressed genes were analysed to give response to differential salinity mechanisms between both accessions. Results The genetic changes found between the accessions under both control and stress conditions could explain the physiological behaviour in A25 by the decrease of osmotic potential that could be due mainly to an increase in potassium and proline accumulation, improved growth (e.g. expansins), more efficient starch accumulation (e.g. BAM1), ion homeostasis (e.g. CBL9, HAI3, BASS1), photosynthetic protection (e.g. FIB1A, TIL, JAR1) and antioxidant activity (e.g. PSDS3, SnRK2.10). In addition, misregulation of ABA signalling (e.g. HAB1, ERD4, HAI3) and other stress signalling genes (e.g. JAR1) would appear crucial to explain the different sensitivity to NaCl in both accessions. Conclusions After analysing the physiological behaviour and transcriptomic results, we have concluded that A25 accession utilizes different strategies to cope better salt stress, being ABA-signalling a pivotal point of regulation. However, other strategies, such as the decrease in osmotic potential to preserve water status in leaves seem to be important to explain the defence response to salinity in pepper A25 plants.This work was financed by the INIA (Spain) and the Ministerio de Ciencia, Innovacion y Universidades (RTA2017-00030-C02-00) and the European Regional Development Fund (ERDF). Lidia Lopez-Serrano is a beneficiary of a doctoral fellowship (FPI-INIA).Lopez-Serrano, L.; Calatayud, Á.; López Galarza, SV.; Serrano Salom, R.; Bueso Rodenas, E. (2021). Uncovering salt tolerance mechanisms in pepper plants: a physiological and transcriptomic approach. BMC Plant Biology. 21(1):1-17. https://doi.org/10.1186/s12870-021-02938-2S11721

    Water Oxidation at Hematite Photoelectrodes with an Iridium-Based Catalyst

    Get PDF
    The iridium complex [Cp*Ir(H2O)3](SO 4) was used as an organometallic source for the electrodeposition of iridium oxide onto Fe2O3. The new iridium-containing electrode allowed us to study the coupling between the photocatalytic properties of hematite and the electrocatalytic properties of the iridium-based material. A cathodic shift of the photocurrent for water oxidation upon electrodeposition of the iridium complex was observed, which increased with increasing surface concentration of IrOx on Fe2O3. The shift for the highest surface concentration of iridium tested amounts to 300 mV at 200 μA·cm-2 current density. The catalytic mechanism of the IrOx layer was unveiled by impedance spectroscopy measurements fitted to a physical model and can be explained on the basis of a highly capacitive layer, which enhances charge separation and stores photogenerated holes at Fe2O3, subsequently oxidizing water. These findings improve our understanding of the mechanism of water oxidation by heterogeneous Ir-based catalysts coupled to semiconductor electrodesJ.B. acknowledges support by projects from Ministerio de Economía y Competititvidad (MINECO) of Spain (Consolider HOPE CSD2007-00007) and Generalitat Valenciana (PROMETEO/2009/058). F.F.S. thanks the funding of University Jaume I- Bancaixa (Grant P1·1B2011-50). S.G. acknowledges support by MINECO of Spain under the Ramon y Cajal programme. Mrs. Encarna Blasco from the Instituto Tecnológico de Cerámica is acknowledged for carrying out the structural characterization by XPS. The SCIE of Universidad de Valencia is acknowledged for the SEM images

    PRX2 and PRX25, peroxidases regulated by COG1, are involved in seed longevity in Arabidopsis

    Full text link
    [EN] Permeability is a crucial trait that affects seed longevity and is regulated by different polymers including proanthocyanidins, suberin, cutin and lignin located in the seed coat. By testing mutants in suberin transport and biosynthesis, we demonstrate the importance of this biopolymer to cope with seed deterioration. Transcriptomic analysis of cog1-2D, a gain-of-function mutant with increased seed longevity, revealed the upregulation of several peroxidase genes. Reverse genetics analysing seed longevity uncovered redundancy within the seed coat peroxidase gene family; however, after controlled deterioration treatment, seeds from the prx2 prx25 double and prx2 prx25 prx71 triple mutant plants presented lower germination than wild-type plants. Transmission electron microscopy analysis of the seed coat of these mutants showed a thinner palisade layer, but no changes were observed in proanthocyanidin accumulation or in the cuticle layer. Spectrophotometric quantification of acetyl bromide-soluble lignin components indicated changes in the amount of total polyphenolics derived from suberin and/or lignin in the mutant seeds. Finally, the increased seed coat permeability to tetrazolium salts observed in the prx2 prx25 and prx2 prx25 prx71 mutant lines suggested that the lower permeability of the seed coats caused by altered polyphenolics is likely to be the main reason explaining their reduced seed longevityRenard, J.; Martínez-Almonacid, I.; Sonntag, A.; Molina, I.; Moya-Cuevas, J.; Bissoli, G.; Muñoz-Bertomeu, J.... (2020). PRX2 and PRX25, peroxidases regulated by COG1, are involved in seed longevity in Arabidopsis. Plant Cell & Environment. 43(2):315-326. https://doi.org/10.1111/pce.13656S315326432Almagro, L., Gómez Ros, L. V., Belchi-Navarro, S., Bru, R., Ros Barceló, A., & Pedreño, M. A. (2008). Class III peroxidases in plant defence reactions. Journal of Experimental Botany, 60(2), 377-390. doi:10.1093/jxb/ern277Bailly, C., El-Maarouf-Bouteau, H., & Corbineau, F. (2008). From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. Comptes Rendus Biologies, 331(10), 806-814. doi:10.1016/j.crvi.2008.07.022Beisson, F., Li, Y., Bonaventure, G., Pollard, M., & Ohlrogge, J. B. (2007). The Acyltransferase GPAT5 Is Required for the Synthesis of Suberin in Seed Coat and Root of Arabidopsis. The Plant Cell, 19(1), 351-368. doi:10.1105/tpc.106.048033Belmonte, M. F., Kirkbride, R. C., Stone, S. L., Pelletier, J. M., Bui, A. Q., Yeung, E. C., … Harada, J. J. (2013). Comprehensive developmental profiles of gene activity in regions and subregions of the Arabidopsis seed. Proceedings of the National Academy of Sciences, 110(5), E435-E444. doi:10.1073/pnas.1222061110Bernards, M. A. (2002). Demystifying suberin. Canadian Journal of Botany, 80(3), 227-240. doi:10.1139/b02-017Bernards, M. A., Summerhurst, D. K., & Razem, F. A. (2004). Oxidases, peroxidases and hydrogen peroxide: The suberin connection. Phytochemistry Reviews, 3(1-2), 113-126. doi:10.1023/b:phyt.0000047810.10706.46Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120. doi:10.1093/bioinformatics/btu170Bueso, E., Muñoz-Bertomeu, J., Campos, F., Brunaud, V., Martínez, L., Sayas, E., … Serrano, R. (2013). ARABIDOPSIS THALIANA HOMEOBOX25 Uncovers a Role for Gibberellins in Seed Longevity. Plant Physiology, 164(2), 999-1010. doi:10.1104/pp.113.232223Châtelain, E., Satour, P., Laugier, E., Ly Vu, B., Payet, N., Rey, P., & Montrichard, F. (2013). Evidence for participation of the methionine sulfoxide reductase repair system in plant seed longevity. Proceedings of the National Academy of Sciences, 110(9), 3633-3638. doi:10.1073/pnas.1220589110Clerkx, E. J. M., Blankestijn-De Vries, H., Ruys, G. J., Groot, S. P. C., & Koornneef, M. (2004). Genetic differences in seed longevity of various Arabidopsis mutants. Physiologia Plantarum, 121(3), 448-461. doi:10.1111/j.0031-9317.2004.00339.xCosio, C., & Dunand, C. (2009). Specific functions of individual class III peroxidase genes. Journal of Experimental Botany, 60(2), 391-408. doi:10.1093/jxb/ern318Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K., & Scheible, W.-R. (2005). Genome-Wide Identification and Testing of Superior Reference Genes for Transcript Normalization in Arabidopsis. Plant Physiology, 139(1), 5-17. doi:10.1104/pp.105.063743Debeaujon, I., Léon-Kloosterziel, K. M., & Koornneef, M. (2000). Influence of the Testa on Seed Dormancy, Germination, and Longevity in Arabidopsis. Plant Physiology, 122(2), 403-414. doi:10.1104/pp.122.2.403Duroux, L., & Welinder, K. G. (2003). The Peroxidase Gene Family in Plants: A Phylogenetic Overview. Journal of Molecular Evolution, 57(4), 397-407. doi:10.1007/s00239-003-2489-3Fedi, F., O’Neill, C. M., Menard, G., Trick, M., Dechirico, S., Corbineau, F., … Penfield, S. (2017). Awake1, an ABC-Type Transporter, Reveals an Essential Role for Suberin in the Control of Seed Dormancy. Plant Physiology, 174(1), 276-283. doi:10.1104/pp.16.01556Francoz, E., Ranocha, P., Nguyen-Kim, H., Jamet, E., Burlat, V., & Dunand, C. (2015). Roles of cell wall peroxidases in plant development. Phytochemistry, 112, 15-21. doi:10.1016/j.phytochem.2014.07.020Franke, R., Briesen, I., Wojciechowski, T., Faust, A., Yephremov, A., Nawrath, C., & Schreiber, L. (2005). Apoplastic polyesters in Arabidopsis surface tissues – A typical suberin and a particular cutin. Phytochemistry, 66(22), 2643-2658. doi:10.1016/j.phytochem.2005.09.027Franke, R., & Schreiber, L. (2007). Suberin — a biopolyester forming apoplastic plant interfaces. Current Opinion in Plant Biology, 10(3), 252-259. doi:10.1016/j.pbi.2007.04.004GoffL TrapnellC&KelleyD(2014)CummeRbund: Analysis exploration manipulation and visualization of Cufflinks high‐throughput sequencing data. R package version 2.22.0.Gou, M., Hou, G., Yang, H., Zhang, X., Cai, Y., Kai, G., & Liu, C.-J. (2016). The MYB107 Transcription Factor Positively Regulates Suberin Biosynthesis. Plant Physiology, 173(2), 1045-1058. doi:10.1104/pp.16.01614Graça, J. (2015). Suberin: the biopolyester at the frontier of plants. Frontiers in Chemistry, 3. doi:10.3389/fchem.2015.00062Haughn, G., & Chaudhury, A. (2005). Genetic analysis of seed coat development in Arabidopsis. Trends in Plant Science, 10(10), 472-477. doi:10.1016/j.tplants.2005.08.005Herrero, J., Fernández-Pérez, F., Yebra, T., Novo-Uzal, E., Pomar, F., Pedreño, M. Á., … Zapata, J. M. (2013). Bioinformatic and functional characterization of the basic peroxidase 72 from Arabidopsis thaliana involved in lignin biosynthesis. Planta, 237(6), 1599-1612. doi:10.1007/s00425-013-1865-5Kim, D., Langmead, B., & Salzberg, S. L. (2015). HISAT: a fast spliced aligner with low memory requirements. Nature Methods, 12(4), 357-360. doi:10.1038/nmeth.3317Kosma, D. K., Murmu, J., Razeq, F. M., Santos, P., Bourgault, R., Molina, I., & Rowland, O. (2014). At MYB 41 activates ectopic suberin synthesis and assembly in multiple plant species and cell types. The Plant Journal, 80(2), 216-229. doi:10.1111/tpj.12624Kunieda, T., Shimada, T., Kondo, M., Nishimura, M., Nishitani, K., & Hara-Nishimura, I. (2013). Spatiotemporal Secretion of PEROXIDASE36 Is Required for Seed Coat Mucilage Extrusion in Arabidopsis  . The Plant Cell, 25(4), 1355-1367. doi:10.1105/tpc.113.110072Lee, Y., Rubio, M. C., Alassimone, J., & Geldner, N. (2013). A Mechanism for Localized Lignin Deposition in the Endodermis. Cell, 153(2), 402-412. doi:10.1016/j.cell.2013.02.045Liang, M., Davis, E., Gardner, D., Cai, X., & Wu, Y. (2006). Involvement of AtLAC15 in lignin synthesis in seeds and in root elongation of Arabidopsis. Planta, 224(5), 1185-1196. doi:10.1007/s00425-006-0300-6Li-Beisson, Y., Shorrosh, B., Beisson, F., Andersson, M. X., Arondel, V., Bates, P. D., … Ohlrogge, J. (2013). Acyl-Lipid Metabolism. The Arabidopsis Book, 11, e0161. doi:10.1199/tab.0161Mandel, T., Candela, H., Landau, U., Asis, L., Zilinger, E., Carles, C. C., & Williams, L. E. (2016). Differential regulation of meristem size, morphology and organization by the ERECTA, CLAVATA and class III HD-ZIP pathways. Development. doi:10.1242/dev.129973Milne, I., Stephen, G., Bayer, M., Cock, P. J. A., Pritchard, L., Cardle, L., … Marshall, D. (2012). Using Tablet for visual exploration of second-generation sequencing data. Briefings in Bioinformatics, 14(2), 193-202. doi:10.1093/bib/bbs012Molina, I., Bonaventure, G., Ohlrogge, J., & Pollard, M. (2006). The lipid polyester composition of Arabidopsis thaliana and Brassica napus seeds. Phytochemistry, 67(23), 2597-2610. doi:10.1016/j.phytochem.2006.09.011Molina, I., Ohlrogge, J. B., & Pollard, M. (2007). Deposition and localization of lipid polyester in developing seeds of Brassica napus and Arabidopsis thaliana. The Plant Journal, 53(3), 437-449. doi:10.1111/j.1365-313x.2007.03348.xMoreira‐Vilar F C. Siqueira‐Soares R deC Finger‐Teixeira A. Oliveira de D. M. Ferro AP Rocha daG J. Ferrarese M deLL Santos dosW. D. Ferrarese‐Filho O(2014).The Acetyl Bromide Method Is Faster Simpler and Presents Best Recovery of Lignin in Different Herbaceous Tissues than Klason and Thioglycolic Acid Methods. PLoS ONE 9:e110000.https://doi.org/10.1371/journal.pone.0110000Oñate-Sánchez, L., & Vicente-Carbajosa, J. (2008). DNA-free RNA isolation protocols for Arabidopsis thaliana, including seeds and siliques. BMC Research Notes, 1(1), 93. doi:10.1186/1756-0500-1-93Østergaard, L., Teilum, K., Mirza, O., Mattsson, O., Petersen, M., Welinder, K. G., … Henriksen, A. (2000). Plant Molecular Biology, 44(2), 231-243. doi:10.1023/a:1006442618860Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29(9), 45e-45. doi:10.1093/nar/29.9.e45Passardi, F., Longet, D., Penel, C., & Dunand, C. (2004). The class III peroxidase multigenic family in rice and its evolution in land plants☆☆☆. Phytochemistry, 65(13), 1879-1893. doi:10.1016/j.phytochem.2004.06.023Pedreira, J., Herrera, M. T., Zarra, I., & Revilla, G. (2010). The overexpression of AtPrx37, an apoplastic peroxidase, reduces growth in Arabidopsis. Physiologia Plantarum, 141(2), 177-187. doi:10.1111/j.1399-3054.2010.01427.xPollard, M., Beisson, F., Li, Y., & Ohlrogge, J. B. (2008). Building lipid barriers: biosynthesis of cutin and suberin. Trends in Plant Science, 13(5), 236-246. doi:10.1016/j.tplants.2008.03.003Quiroga, M., Guerrero, C., Botella, M. A., Barceló, A., Amaya, I., Medina, M. I., … Valpuesta, V. (2000). A Tomato Peroxidase Involved in the Synthesis of Lignin and Suberin. Plant Physiology, 122(4), 1119-1128. doi:10.1104/pp.122.4.1119Rains, M. K., Gardiyehewa de Silva, N. D., & Molina, I. (2017). Reconstructing the suberin pathway in poplar by chemical and transcriptomic analysis of bark tissues. Tree Physiology, 38(3), 340-361. doi:10.1093/treephys/tpx060Russell, W. R., Burkitt, M. J., Scobbie, L., & Chesson, A. (2005). EPR Investigation into the Effects of Substrate Structure on Peroxidase-Catalyzed Phenylpropanoid Oxidation. Biomacromolecules, 7(1), 268-273. doi:10.1021/bm050636oSano, N., Rajjou, L., North, H. M., Debeaujon, I., Marion-Poll, A., & Seo, M. (2015). Staying Alive: Molecular Aspects of Seed Longevity. Plant and Cell Physiology, 57(4), 660-674. doi:10.1093/pcp/pcv186Shigeto, J., Itoh, Y., Hirao, S., Ohira, K., Fujita, K., & Tsutsumi, Y. (2015). Simultaneously disrupting AtPrx2 , AtPrx25 and AtPrx71 alters lignin content and structure in Arabidopsis stem. Journal of Integrative Plant Biology, 57(4), 349-356. doi:10.1111/jipb.12334Shigeto, J., Kiyonaga, Y., Fujita, K., Kondo, R., & Tsutsumi, Y. (2013). Putative Cationic Cell-Wall-Bound Peroxidase Homologues in Arabidopsis, AtPrx2, AtPrx25, and AtPrx71, Are Involved in Lignification. Journal of Agricultural and Food Chemistry, 61(16), 3781-3788. doi:10.1021/jf400426gSoliday, C. L., Dean, B. B., & Kolattukudy, P. E. (1978). Suberization: Inhibition by Washing and Stimulation by Abscisic Acid in Potato Disks and Tissue Culture. Plant Physiology, 61(2), 170-174. doi:10.1104/pp.61.2.170Tobimatsu, Y., Chen, F., Nakashima, J., Escamilla-Trevino, L. L., Jackson, L., Dixon, R. A., & Ralph, J. (2013). Coexistence but Independent Biosynthesis of Catechyl and Guaiacyl/Syringyl Lignin Polymers in Seed Coats. The Plant Cell, 25(7), 2587-2600. doi:10.1105/tpc.113.113142Trapnell, C., Hendrickson, D. G., Sauvageau, M., Goff, L., Rinn, J. L., & Pachter, L. (2012). Differential analysis of gene regulation at transcript resolution with RNA-seq. Nature Biotechnology, 31(1), 46-53. doi:10.1038/nbt.2450Vishwanath, S. J., Delude, C., Domergue, F., & Rowland, O. (2014). Suberin: biosynthesis, regulation, and polymer assembly of a protective extracellular barrier. Plant Cell Reports, 34(4), 573-586. doi:10.1007/s00299-014-1727-zVishwanath, S. J., Kosma, D. K., Pulsifer, I. P., Scandola, S., Pascal, S., Joubès, J., … Domergue, F. (2013). Suberin-Associated Fatty Alcohols in Arabidopsis: Distributions in Roots and Contributions to Seed Coat Barrier Properties  . Plant Physiology, 163(3), 1118-1132. doi:10.1104/pp.113.224410Vogt, T. (2010). Phenylpropanoid Biosynthesis. Molecular Plant, 3(1), 2-20. doi:10.1093/mp/ssp106Wang, G.-L., Que, F., Xu, Z.-S., Wang, F., & Xiong, A.-S. (2016). Exogenous gibberellin enhances secondary xylem development and lignification in carrot taproot. Protoplasma, 254(2), 839-848. doi:10.1007/s00709-016-0995-6Yadav, V., Molina, I., Ranathunge, K., Castillo, I. Q., Rothstein, S. J., & Reed, J. W. (2014). ABCG Transporters Are Required for Suberin and Pollen Wall Extracellular Barriers in Arabidopsis    . The Plant Cell, 26(9), 3569-3588. doi:10.1105/tpc.114.129049Zieslin, N., & Ben-Zaken, R. (1992). Effects of applied auxin, gibberellin and cytokinin on the activity of peroxidases in the peduncles of rose flowers. Plant Growth Regulation, 11(1), 53-57. doi:10.1007/bf0002443

    Percepción del alumnado de la adquisición de competencias

    Get PDF
    Con el nuevo diseño de una asignatura práctica de laboratorio, se pretende fomentar la adquisición de competencias transversales por parte del alumnado que serán muy importantes en el ejercicio de la profesión. En la Guía de la asignatura se incluye un conjunto de objetivos aportados por el profesorado, a la asignatura Experimentación en Química Inorgánica, relacionados con la adquisición de competencias muy importantes en la actualidad para los profesionales de la química. El alumnado trabaja en grupos para realizar los pasos necesarios para redactar el guion de una práctica de laboratorio; se entrena en la realización de búsquedas de información en fuentes fiables, analiza la aplicabilidad de la información encontrada a la elaboración del guion propuesto, realiza la experiencia de laboratorio seleccionada en función de los parámetros de la química verde y usando los medios de seguridad en el laboratorio que se requieren y, finalmente, redacta el guion con los contenidos necesarios para que se pueda utilizar en la asignatura de Experimentación en Química Inorgánica. Adicionalmente, cada grupo expone al resto del alumnado los pasos realizados para elaborar el documento escrito entregado, utilizando material gráfico de apoyo a su exposición. Se investiga, mediante encuestas, la percepción del alumnado del nivel adquirido en estas competencias

    GEQI (Green Experimentación en Química Inorgánica)

    Get PDF
    Se rediseñó una asignatura práctica del Grado en Química para fomentar la adquisición de competencias transferibles, demandadas por las empresas en el s. XXI para la profesión química. Se seleccionaron actividades que trabajan estas competencias, adicionalmente a las cognitivas y procedimentales. La Red GEQI elaboró la Guía de la asignatura, incluyendo objetivos aportados por el profesorado, relacionados con dichas competencias. Las actividades propuestas se realizan todas en grupo, utilizando procedimientos de gestión de calidad y buenas prácticas de laboratorio. Entre ellas están la elaboración de una práctica adaptada a la Química Verde, exposición oral del desarrollo del trabajo realizado, problemas encontrados y soluciones aportadas, utilizando material gráfico de apoyo a la exposición. Los instrumentos de evaluación de las competencias se calificaron utilizando matrices de evaluación que se suministraron al alumnado previamente a la realización de los mismos, con un doble fin: que el alumnado conociera la puntuación de cada parte del contenido evaluado, para que centraran su esfuerzo en conseguir las puntuaciones más altas, y que las calificaciones fueran homogéneas independientemente del profesorado que evaluara a cada grupo. Se investiga, mediante encuestas, la percepción del alumnado del nivel adquirido en estas competencias y se compara con las calificaciones obtenidas

    Inorganic chemistry teaching materials for mobile learning and/or “bring your own device” strategy

    Get PDF
    The study habits of millennial students are quite different from the students of past times. The new university student generations will need new teaching approaches adapted to their technological skills, with lap tops, tablets, smartphones, and so on, as tools for learning as its own pace, everywhere. In this communication, the adaptation of a collection of study materials, used in an Inorganic Chemistry Foundations topic, for their use in mobile learning and/or BYOD (Bring Your Own Device) strategy is presented. The materials are suited for the understanding of inorganic crystalline solids which, having crystalline structures (long range order), seem so difficult to visualize with 2D figures, as to understand their structural characteristics. The format of these materials was initially in PDF documents with 2D figures used for constructing models with little balls, following the steps in the text, on-site class in the laboratory. Later, the use of web pages with Java applets, running with JMol, introduced the students in a 3D visualization of the structure; clicking the different applet buttons student discovers the inner structure of the crystalline inorganic solids step by step. Both types of materials have been now brought up to date so that students would use them not only on-site classroom but also in every other time and place. Because JMol with Java doesn’t run in mobile devices, it has been necessary to use JSMol and also re-write the HTML5 (HyperText Markup Language) code and CSS (Cascading Style Sheet) following the RWD (Responsive Web Design) approach. Programming the website to automatically respond to the user’s preferences, it can be switching continuously image size and scripting abilities to accommodate for resolution, depending on the device used

    Diseño de materiales docentes accesibles para su utilización en prácticas de asignaturas de Química Inorgánica

    Get PDF
    En la Red GEQIA (Química Inorgánica verde y accesible) se plantea abordar, en varias etapas, la adaptación de materiales que se utilizan en la docencia de créditos prácticos de asignaturas de Química Inorgánica de acuerdo con el “Plan de Actuación para la Igualdad de Oportunidades para Estudiantes con Discapacidad” de la Universidad de Alicante (2012), dentro del marco de la Constitución Española (1978) en su art. 49 y de la Asamblea General de las Naciones Unidas (ONU) (2006) en la Convención Internacional sobre los Derechos de las Personas con Discapacidad y su Protocolo Facultativo, que garantizan su inclusión en todas las etapas. Entre los objetivos globales se encuentran: i) la determinación y diseño de los ajustes razonables que se deben realizar en asignaturas que tienen créditos experimentales para hacerlas accesibles a personas con diversidad funcional, ii) aplicar los criterios de accesibilidad universal para la elaboración de los materiales de apoyo de las asignaturas así como de los instrumentos de evaluación, iii) adaptar el puesto de trabajo de laboratorio para su uso por personas con diversidad funcional. El proyecto de trabajo se realiza en diversas etapas. En una primera etapa, la accesibilidad de las prácticas de laboratorio actuales se ha mejorado mediante la adquisición de materiales, como buretas o tijeras, que puedan manejarse adecuadamente por personas zurdas sin tener que forzar su anatomía y, para el alumnado con impedimento de movilidad, se ha conseguido fácilmente la adaptación del puesto de trabajo en los laboratorios utilizando una silla que puede desplazarse en la vertical hasta alcanzar la distancia óptima de la persona respecto a la superficie de trabajo (perteneciente a la dotación del Centro de Apoyo al Estudiante, CAE). En una segunda etapa, se ensaya la adaptación de una práctica de estructuras de metales para que sea accesible al alumnado con diversidad funcional, modificando el documento explicativo de la práctica para adaptarlo al diseño universal. Así mismo, se adapta también la web de apoyo docente para hacerla accesible, siguiendo las Pautas de Accesibilidad para el Contenido Web (WCAG) 2.0 (2008) y, además, utilizable en dispositivos móviles (teléfonos y tabletas). La adaptación de la web actual de Química Inorgánica Estructural supone la descripción de todas las imágenes que contiene y de las imágenes interactivas que se obtienen en los diferentes applets para describir las estructuras de metales y de compuestos iónicos, así como de las operaciones de simetría. Dentro del conjunto de materiales que se utilizan en la práctica hay modelos 3D para su manipulación y montaje de estructuras, con el objetivo de entender las estructuras de sólidos cristalinos. Estos modelos se adaptan para su uso por parte de personas con pérdida parcial o total de la visión para que puedan seguir las explicaciones con el tacto, convirtiendo el código de colores, que se utiliza en los modelos actuales, en un código de rugosidad superficial. Dichos modelos se obtienen mediante impresión 3D, tomando como punto de partida los diseños de los modelos actuales para preparar el documento que se imprime en la impresora 3D. Los modelos en 3D se señalizan con etiquetas escritas en Braille y el documento de trabajo de la práctica se suministra al alumnado en un fichero con formato pdf accesible que puede leerse en una línea Braille desde un dispositivo móvil (teléfono o tableta). La comprobación de la utilidad de estos materiales se contrasta con usuarios y especialistas en apoyo a la diversidad funcional
    corecore