57 research outputs found

    Interface engineering of ultrathin Cu(In,Ga)Se-2 solar cells on reflective back contacts

    Get PDF
    Cu(In,Ga)Se-2-based (CIGS) solar cells with ultrathin (<= 500 nm) absorber layers suffer from the low reflectivity of conventional Mo back contacts. Here, we design and investigate ohmic and reflective back contacts (RBC) made of multilayer stacks that are compatible with the direct deposition of CIGS at 500 degrees C and above. Diffusion mechanisms and reactions at each interface and in the CIGS layer are carefully analyzed by energy dispersive X-ray (EDX)/scanning transmission electron microscopy (STEM). It shows that the highly reflective silver mirror is efficiently encapsulated in ZnO:Al layers. The detrimental reaction between CIGS and the top In2O3:Sn (ITO) layer used for ohmic contact can be mitigated by adding a 3 nm thick Al2O3 layer and by decreasing the CIGS coevaporation temperature from 550 degrees C to 500 degrees C. It also improves the compositional grading of Ga toward the CIGS back interface, leading to increased open- circuit voltage and fill factor. The best ultrathin CIGS solar cell on RBC exhibits an efficiency of 13.5% (+1.0% as compared to our Mo reference) with a short-circuit current density of 28.9 mA/cm(2) (+2.6 mA/cm(2)) enabled by double-pass absorption in the 510 nm thick CIGS absorber. RBC are easy to fabricate and could benefit other photovoltaic devices that require highly reflective and conductive contacts subject to high temperature processes

    CdS and Zn1−xSnxOy buffer layers for CIGS solar cells

    Get PDF
    Thin film solar cells based on Cu(In,Ga)Se2 (CIGS), where just the buffer layer is changed, were fabricated and studied. The effects of two different buffer layers, CdS and ZnxSn1-xOy (ZnSnO), are compared using several characterization techniques. We compared both devices and observe that the ZnSnO-based solar cells have similar values of power conversion efficiency as compared to the cells with CdS buffer layers. The ZnSnO-based devices have higher values in the short-circuit current (Jsc) that compensate for lower values in fill factor (FF) and open circuit voltage (Voc) than CdS based devices. Kelvin probe force microscopy (KPFM) results indicate that CdS provides junctions with slightly higher surface photovoltage (SPV) than ZnSnO, thus explaining the lower Voc potential for the ZnSnO sample. The TEM analysis shows a poly-crystalline ZnSnO layer and we have not detected any strong evidence of diffusion of Zn or Sn into the CIGS. From the photoluminescence measurements, we concluded that both samples are being affected by fluctuating potentials, although this effect is higher for the CdS sample.publishe

    Insulator materials for interface passivation of Cu(In,Ga)Se2 thin films

    Get PDF
    In this work, Metal-Insulator-Semiconductor (MIS) structures were fabricated in order to study different types of insulators, namely, aluminum oxide (Al2O3), silicon nitride (Si3Nx) and silicon oxide (SiOx) to be used as passivation layers in Cu(In,Ga)Se2 (CIGS) thin film solar cells. The investigated stacks consisted of SLG/Mo/CIGS/insulator/Al. Raman scattering and Photoluminescence measurements were done to verify the insulator deposition influence on the CIGS surface. In order to study the electrical properties of the CIGS-insulator interface, capacitance vs. conductance and voltage (C-G-V) measurements were done to estimate the number and polarity of fixed insulator charges (Qf). The density of interface defects (Dit) was estimated from capacitance vs. conductance and frequency (C-G-f) measurements. This study evidences that the deposition of the insulators at high temperatures (300 ºC) and the use of sputtering technique cause surface modification on the CIGS surface. We found that, by varying the SiOx deposition parameters, it is possible to have opposite charges inside the insulator, which would allow its use in different device architectures. The material with lower Dit values was Al2O3 when deposited by sputtering.publishe

    A morphological and electronic study of ultrathin rear passivated Cu(In,Ga)Se2 solar cells

    Get PDF
    The effects of introducing a passivation layer at the rear of ultrathin Copper Indium Gallium di-Selenide Cu(In,Ga)Se2 (CIGS) solar cells is studied. Point contact structures have been created on 25 nm Al2O3 layer using e-beam lithography. Reference solar cells with ultrathin CIGS layers provide devices with average values of light to power conversion efficiency of 8.1 % while for passivated cells values reached 9.5 %. Electronic properties of passivated cells have been studied before, but the influence of growing the CIGS on Al2O3 with point contacts was still unknown from a structural and morphological point of view. Scanning Electron Microscopy, X-ray Diffraction and Raman spectroscopy measurements were performed. These measurements revealed no significant morphological or structural differences in the CIGS layer for the passivated samples compared with reference samples. These results are in agreement with the similar values of carrier density (~8x1016 cm-3) and depletion region (~160 nm) extracted using electrical measurements. A detailed comparison between both sample types in terms of current-voltage, external quantum efficiency and photoluminescence measurements show very different optoelectronic behaviour which is indicative of a successful passivation. SCAPS simulations are done to explain the observed results in view of passivation of the rear interface.publishe

    Cd and Cu interdiffusion in Cu(In,Ga)Se2/CdS hetero-interfaces

    Get PDF
    We report a detailed characterization of an industry-like prepared Cu(In,Ga)Se2 (CIGS)/CdS heterojunction by scanning transmission electron microscopy (STEM) and photoluminescence (PL). Energy dispersive x-ray spectroscopy (EDS) shows the presence of several regions in the CIGS layer that are Cu deprived and Cd enriched, suggesting the segregation of Cd-Se. Concurrently, the CdS layer shows Cd-deprived regions with the presence of Cu, suggesting a segregation of Cu-S. The two types of segregations are always found together, which, to the best of our knowledge, is observed for the first time. The results indicate that there is a diffusion process that replaces Cu with Cd in the CIGS layer and Cd with Cu in the CdS layer. Using a combinatorial approach we identified that this effect is independent of focused-ion beam sample preparation and of the TEM-grid. Furthermore, photoluminescence measurements before and after an HCl etch indicate a lower degree of defects in the post-etch sample, compatible with the segregates removal. We hypothesize that Cu2-xSe nanodomains react during the chemical bath process to form these segregates since the chemical reaction that dominates this process is thermodynamically favourable. These results provide important additional information about the formation of the CIGS/CdS interface.publishe

    Rear optical reflection and passivation using a nanopatterned metal/dielectric structure in thin-film solar cells

    Get PDF
    Currently, one of the main limitations in ultrathin Cu(In,Ga)Se2 (CIGS) solar cells are the optical losses, since the absorber layer is thinner than the light optical path. Hence, light management, including rear optical reflection and light trapping is needed. In this work we focus on increasing the rear optical reflection. For this, a novel structure based on having a metal interlayer in between the Mo rear contact and the rear passivation layer is presented. In total, eight different metallic interlayers are compared. For the whole series, the passivation layer is aluminum oxide (Al2O3). The interlayers are used to enhance the reflectivity of the rear contact and thereby increasing the amount of light reflected back into the absorber. In order to understand the effects of the interlayer in the solar cell performance both from optical and/or electrical point of view, optical simulations were performed together with fabrication and electrical measurements. Optical simulations results are compared with current density-voltage (J-V) behavior and external quantum efficiency (EQE) measurements. A detailed comparison between all the interlayers is done, in order to identify the material with the greatest potential to be used as rear reflective layer for ultrathin CIGS solar cells and to establish fabrication challenges. The Ti-W alloy is a promising rear reflective layer since it provides solar cells with light to power conversion efficiency values of 9.9 %, which is 2.2 % (abs) higher than the passivated ultrathin sample and 3.7 % (abs) higher than the unpassivated ultrathin reference sample.publishe

    SiOx Patterned Based Substrates Implemented in Cu(In,Ga)Se2 Ultrathin Solar Cells: Optimum Thickness

    Get PDF
    Interface recombination in sub-µm optoelectronics has a major detrimental impact on devices’ performance, showing the need for tailored passivation strategies to reach a technological boost. In this work, SiOx passivation based substrates were developed and integrated into ultrathin Cu(In,Ga)Se2 (CIGS) solar cells. This study aims to understand the impact of a passivation strategy, which uses several SiOx layer thicknesses (3, 8, and 25 nm) integrated into high performance substrates (HPS). The experimental study is complemented with 3D Lumerical finite-difference time-domain (FDTD) and 2D Silvaco ATLAS optical and electrical simulations, respectively, to perform a decoupling of optical and electronic gains, allowing for a deep discussion on the impact of the SiOx layer thickness in the CIGS solar cell performance. This study shows that as the passivation layer thickness increases, a rise in parasitic losses is observed. Hence, a balance between beneficial passivation and optical effects with harmful architectural constraints defines a threshold thickness to attain the best solar cell performance. Analyzing their electrical parameters, the 8 nm novel SiOx based substrate achieved a light to power conversion efficiency value of 13.2 %, a 1.3 % absolute improvement over the conventional Mo substrate (without SiOx).info:eu-repo/semantics/submittedVersio

    An invasive mammal (the gray squirrel, sciurus carolinensis) commonly hosts diverse and atypical genotypes of the zoonotic pathogen borrelia burgdorferi Sensu Lato

    Get PDF
    Invasive vertebrate species can act as hosts for endemic pathogens and may alter pathogen community composition and dynamics. For the zoonotic pathogen Borrelia burgdorferi sensu lato, the agent of Lyme borreliosis, recent work shows invasive rodent species can be of high epidemiological importance and may support host-specific strains. This study examined the role of gray squirrels (Sciurus carolinensis) (n � 679), an invasive species in the United Kingdom, as B. burgdorferi sensu lato hosts. We found that gray squirrels were frequently infested with Ixodes ricinus, the main vector of B. burgdorferi sensu lato in the United Kingdom, and 11.9% were infected with B. burgdorferi sensu lato. All four genospecies that occur in the United Kingdom were detected in gray squirrels, and unexpectedly, the bird-associated genospecies Borrelia garinii was most common. The second most frequent infection was with Borrelia afzelii. Genotyping of B. garinii and B. afzelii produced no evidence for strains associated with gray squirrels. Generalized linear mixed models (GLMM) identified tick infestation and date of capture as significant factors associated with B. burgdorferi sensu lato infection in gray squirrels, with infection elevated in early summer in squirrels infested with ticks. Invasive gray squirrels appear to become infected with locally circulating strains of B. burgdorferi sensu lato, and further studies are required to determine their role in community disease dynamics. Our findings highlight the fact that the role of introduced host species in B. burgdorferi sensu lato epidemiology can be highly variable and thus difficult to predict
    • …
    corecore