28 research outputs found

    Epidemiological surveillance for <i>Trichinella britovi</i> infection in free-ranging pigs of Sardinia

    Get PDF
    The aim of the present work was to investigate on Trichinella sp. infection in free-ranging pigs of the Orgosolo municipality

    Single severe traumatic brain injury produces progressive pathology with ongoing contralateral white matter damage one year after injury

    Get PDF
    There is increasing recognition that traumatic brain injury (TBI) may initiate long-term neurodegenerative processes, particularly chronic traumatic encephalopathy. However, insight into the mechanisms transforming an initial biomechanical injury into a neurodegenerative process remain elusive, partly as a consequence of the paucity of informative pre-clinical models. This study shows the functional, whole brain imaging and neuropathological consequences at up to one year survival from single severe TBI by controlled cortical impact in mice. TBI mice displayed persistent sensorimotor and cognitive deficits. Longitudinal T2 weighted magnetic resonance imaging (MRI) showed progressive ipsilateral (il) cortical, hippocampal and striatal volume loss, with diffusion tensor imaging demonstrating decreased fractional anisotropy (FA) at up to one year in the il-corpus callosum (CC: − 30%) and external capsule (EC: − 21%). Parallel neuropathological studies indicated reduction in neuronal density, with evidence of microgliosis and astrogliosis in the il-cortex, with further evidence of microgliosis and astrogliosis in the il-thalamus. One year after TBI there was also a decrease in FA in the contralateral (cl) CC (− 17%) and EC (− 13%), corresponding to histopathological evidence of white matter loss (cl-CC: − 68%; cl-EC: − 30%) associated with ongoing microgliosis and astrogliosis. These findings indicate that a single severe TBI induces bilateral, long-term and progressive neuropathology at up to one year after injury. These observations support this model as a suitable platform for exploring the mechanistic link between acute brain injury and late and persistent neurodegeneration

    Paralytic shellfish poison algal biotoxins: Sardinia report 2002-2011 and non-compliance management

    Get PDF
    Several microalgae of the genus Alexandrium (Alexandrium minutum and Alexandrium catenelle) can produce an algal biotoxin, the paralytic shellfish poison (PSP) that can be accumulated in the shellfish edible tissues making them hazardous to the consumer’s health. In this paper we report i) the results of PSP toxins survey carried out by mouse bioassays (mouse test AOAC 958.08) on 7457 samples of bivalve molluscs farmed in Sardinia and in other European countries and marketed in Sardinia region from 2002 to 2011, and ii) the management of positive cases. Based on our experience it is very important to strictly apply the planned activities in order to prevent any risk and to protect the consumer’s and producer’s health

    Bacterial and viral investigations combined with determination of phytoplankton and algal biotoxins in mussels and water from a Mediterranean coastal lagoon (Sardinia, Italy).

    Get PDF
    Calich Lagoon is a Mediterranean coastal lagoon located along the northwestern coast of Sardinia (Italy). The connection to marine and fresh water determines the high productivity of this coastal lagoon. Despite its great potential and the presence of natural beds of bivalve mollusks (Mytilus galloprovincialis), the lagoon has not yet been classified for shellfish production. In this study, through a multidisciplinary approach, the presence of several bacterial pathogens (Escherichia coli, Salmonella spp., and Vibrio spp.) and viral pathogens (hepatitis A virus and norovirus genogroups I and II) was evaluated from March 2017 to February 2018. In addition, phytoplankton composition in lagoon waters and associated algal biotoxins (paralytic and diarrhetic shellfish poisoning) in mussels were also monitored. The aim of this study was to provide useful data to improve knowledge about their seasonal presence and to assess the potential risk for public health, as well as to provide input for future conservation and management strategies. In mussels, Salmonella spp. were found in spring, along with E. coli, but Salmonella spp. were not found in autumn or winter, even though E. coli was detected in these seasons. Vibrio parahaemolyticus was found in autumn and winter, but not in spring. Norovirus genogroups I and II were found in winter samples. None of the bacteria were found in summer. Algal biotoxins have never been detected in mussel samples. Among potentially harmful phytoplankton, only Pseudo-nitzschia spp. were present, mainly in summer. The results showed that a possible bacterial and viral contamination, together with the presence of potentially toxic microalgae, is a real problem. Therefore, the development of natural resource management strategies is necessary to ensure the good quality of waters and guarantee the protection of consumers

    GWAS of genetic factors affecting white blood cell morphological parameters in Sardinians uncovers influence of chromosome 11 innate immunity gene cluster on eosinophil morphology

    Get PDF
    Few genome-wide association studies (GWAS) analyzing genetic regulation of morphological traits of white blood cells have been reported. We carried out a GWAS of 12 morphological traits in 869 individuals from the general population of Sardinia, Italy. These traits, included measures of cell volume, conductivity and light scatter in four white-cell populations (eosinophils, lymphocytes, monocytes, neutrophils). This analysis yielded seven statistically significant signals, four of which were novel (four novel, PRG2, P2RX3, two of CDK6). Five signals were replicated in the independent INTERVAL cohort of 11 822 individuals. The most interesting signal with large effect size on eosinophil scatter (P-value = 8.33 x 10-32, beta = -1.651, se = 0.1351) falls within the innate immunity cluster on chromosome 11, and is located in the PRG2 gene. Computational analyses revealed that a rare, Sardinian-specific PRG2:p.Ser148Pro mutation modifies PRG2 amino acid contacts and protein dynamics in a manner that could possibly explain the changes observed in eosinophil morphology. Our discoveries shed light on genetics of morphological traits. For the first time, we describe such large effect size on eosinophils morphology that is relatively frequent in Sardinian population.Intramural Research Program of the National Institute on Aging (N01-AG-1-2109 and HHSN271201100005C); National Institutes of Health (NIH); by research grants from the Ministry of Science and Innovation (PGC2018-096049-B-I00); European Regional Development Fund (FEDER); Andalusian Government (BIO-198, US-1254317, US-1257019, P18-FR-3487 and P18HO-4091, US/JUNTA/FEDER, UE), University of Seville (VI PPIT) and the Ramón Areces Foundation. G.P.-M. was awarded a PhD fellowship from the Spanish Ministry of Education, Culture and Sport (FPU17/04604).Peer reviewe

    Overexpression of the Cytokine BAFF and Autoimmunity Risk

    Get PDF
    BACKGROUND\textbf{BACKGROUND}: Genomewide association studies of autoimmune diseases have mapped hundreds of susceptibility regions in the genome. However, only for a few association signals has the causal gene been identified, and for even fewer have the causal variant and underlying mechanism been defined. Coincident associations of DNA variants affecting both the risk of autoimmune disease and quantitative immune variables provide an informative route to explore disease mechanisms and drug-targetable pathways. METHODS\textbf{METHODS}: Using case-control samples from Sardinia, Italy, we performed a genomewide association study in multiple sclerosis followed by TNFSF13B locus-specific association testing in systemic lupus erythematosus (SLE). Extensive phenotyping of quantitative immune variables, sequence-based fine mapping, cross-population and cross-phenotype analyses, and gene-expression studies were used to identify the causal variant and elucidate its mechanism of action. Signatures of positive selection were also investigated. RESULTS\textbf{RESULTS}: A variant in TNFSF13B, encoding the cytokine and drug target B-cell activating factor (BAFF), was associated with multiple sclerosis as well as SLE. The disease-risk allele was also associated with up-regulated humoral immunity through increased levels of soluble BAFF, B lymphocytes, and immunoglobulins. The causal variant was identified: an insertion-deletion variant, GCTGT→A (in which A is the risk allele), yielded a shorter transcript that escaped microRNA inhibition and increased production of soluble BAFF, which in turn up-regulated humoral immunity. Population genetic signatures indicated that this autoimmunity variant has been evolutionarily advantageous, most likely by augmenting resistance to malaria. CONCLUSIONS\textbf{CONCLUSIONS}: A TNFSF13B variant was associated with multiple sclerosis and SLE, and its effects were clarified at the population, cellular, and molecular levels. (Funded by the Italian Foundation for Multiple Sclerosis and others.).Supported by grants (2011/R/13 and 2015/R/09, to Dr. Cucca) from the Italian Foundation for Multiple Sclerosis; contracts (N01-AG-1-2109 and HHSN271201100005C, to Dr. Cucca) from the Intramural Research Program of the National Institute on Aging, National Institutes of Health (NIH); a grant (FaReBio2011 “Farmaci e Reti Biotecnologiche di Qualità,” to Dr. Cucca) from the Italian Ministry of Economy and Finance; a grant (633964, to Dr. Cucca) from the Horizon 2020 Research and Innovation Program of the European Union; a grant (U1301.2015/AI.1157.BE Prat. 2015-1651, to Dr. Cucca) from Fondazione di Sardegna; grants (“Centro per la ricerca di nuovi farmaci per malattie rare, trascurate e della povertà” and “Progetto collezione di composti chimici ed attività di screening,” to Dr. Cucca) from Ministero dell’Istruzione, dell’Università e della Ricerca; grants (HG005581, HG005552, HG006513, and HG007022, to Dr. Abecasis) from the National Human Genome Research Institute; a grant (9-2011-253, to Dr. Todd) from JDRF; a grant (091157, to Dr. Todd) from the Wellcome Trust; a grant (to Dr. Todd) from the National Institute for Health Research (NIHR); and the NIHR Cambridge Biomedical Research Centre. Dr. Idda was a recipient of a Master and Back fellowship from the Autonomous Region of Sardinia

    Population- and individual-specific regulatory variation in Sardinia

    Get PDF
    Genetic studies of complex traits have mainly identified associations with noncoding variants. To further determine the contribution of regulatory variation, we combined whole-genome and transcriptome data for 624 individuals from Sardinia to identify common and rare variants that influence gene expression and splicing. We identified 21,183 expression quantitative trait loci (eQTLs) and 6,768 splicing quantitative trait loci (sQTLs), including 619 new QTLs. We identified high-frequency QTLs and found evidence of selection near genes involved in malarial resistance and increased multiple sclerosis risk, reflecting the epidemiological history of Sardinia. Using family relationships, we identified 809 segregating expression outliers (median z score of 2.97), averaging 13.3 genes per individual. Outlier genes were enriched for proximal rare variants, providing a new approach to study large-effect regulatory variants and their relevance to traits. Our results provide insight into the effects of regulatory variants and their relationship to population history and individual genetic risk.M.P. is supported by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement 633964 (ImmunoAgeing). Z.Z. is supported by the National Science Foundation (NSF) GRFP (DGE- 114747) and by the Stanford Center for Computational, Evolutionary, and Human Genomics (CEHG). Z.Z., J.R.D., and G.T.H. also acknowledge support from the Stanford Genome Training Program (SGTP; NIH/NHGRI T32HG000044). J.R.D. is supported by the Stanford Graduate Fellowship. K.R.K. is supported by Department of Defense, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEQ) Fellowship 32 CFR 168a. S.J.S. is supported by the NIHR Cambridge Biomedical Research Centre. The SardiNIA project is supported in part by the intramural program of the National Institute on Aging through contract HHSN271201100005C to the Consiglio Nazionale delle Ricerche of Italy. The RNA sequencing was supported by the PB05 InterOmics MIUR Flagship grant; by the FaReBio2011 “Farmaci e Reti Biotecnologiche di Qualità” grant; and by Sardinian Autonomous Region (L.R. no. 7/2009) grant cRP3-154 to F. Cucca, who is also supported by the Italian Foundation for Multiple Sclerosis (FISM 2015/R/09) and by the Fondazione di Sardegna (ex Fondazione Banco di Sardegna, Prot. U1301.2015/AI.1157.BE Prat. 2015-1651). S.B.M. is supported by the US National Institutes of Health through R01HG008150, R01MH101814, U01HG007436, and U01HG009080. All of the authors would like to thank the CRS4 and the SCGPM for the computational infrastructure supporting this project

    Preliminary study on Norovirus, hepatitis A virus, Escherichia coli and their potential seasonality in shellfish from different growing and harvesting areas in Sardinia region

    No full text
    Edible lamellibranch molluscs can be involved in foodborne disease and infections of varying severity. They are filter feeding animals able to retain and concentrate in their organism bacteria, parasites, viruses and biotoxins marine algae present in their external environment. Major shellfish harvesting and relaying areas from different areas in Sardinia region were defined and studied by analysing different physicochemical parameters in the water and the levels of Escherichia coli (E. coli), Norovirus (NoVs) genogroup I (NoVGI), NoVs genogroup II (NoVGII) and hepatitis A virus (HAV) in the shellfish harvested and farmed from 2009 to 2011. During that period the identification of the viral agents was carried out by one step real-time reverse transcriptase-polymerase chain reaction and Escherichia coli according to ISO TS 16649- 3:2005 standard method. A total of 1266 shellfish samples were tested for NoVGI, NoVGII, HAV and faecal indicators. Norovirus contamination was found in 337 samples (26.6%); only one sample of mussels was positive for HAV (0.08%); while E. coli prevalence was 3.8% in shellfish. The probability of observing shellfish samples positive for NoVs, HAV and E. coli presence was associated with harvesting, growing and relaying areas, period of sampling, environmental parameters, animal species (P&lt;0.05). Although the higher prevalence rate of human enteropathogenic viruses was found in the winter period, we did not observe a significant relationship between the effect of seawater temperature (seasonality) and NoVs presence all over the study period; in fact, according to statistical analysis, the presence of human enteric viruses does not appear to be related to water temperature

    Effect of Genetic Factors, Age and Sex on Levels of Circulating Extracellular Vesicles and Platelets

    No full text
    Extracellular vesicles (EVs) mediate cell interactions in biological processes, such as receptor activation or molecule transfer. Estimates of variation by age and sex have been limited by small sample size, and no report has assessed the contribution of genetic factors to levels of EVs. Here, we evaluated blood levels of 25 EV and 3 platelet traits in 974 individuals (933 genotyped) and reported the first genome-wide association study (GWAS) on levels of these traits. EV levels all decreased with age, whereas the trend for their surface markers was more heterogeneous. Platelets and CD31dim platelet EVs significantly increased in females compared to males, although CD31 expression on both platelets and platelet EVs decreased in females. Levels of the other EV subsets were similar between sexes. GWAS revealed three statistically significant genetic signals associated with EV levels in the F10 and GBP1 genes and in the intergenic region between LRIG1 and KBTBD8. These add to a signal in the 3′UTR of RHOF associated with CD31 expression on platelets that was previously found to be associated with other platelet traits. These findings suggest that EV formation is not a simple, constant adjunct of metabolism but is under both age-related and genetic control that can be independent of the regulation of the levels of the cells from which the EVs derive
    corecore