11 research outputs found

    Acidocalcisomes as Calcium- and Polyphosphate-Storage Compartments during Embryogenesis of the Insect Rhodnius prolixus Stahl

    Get PDF
    BACKGROUND: The yolk of insect eggs is a cellular domain specialized in the storage of reserve components for embryo development. The reserve macromolecules are stored in different organelles and their interactions with the embryo cells are mostly unknown. Acidocalcisomes are lysosome-related organelles characterized by their acidic nature, high electron density and large content of polyphosphate bound to several cations. In this work, we report the presence of acidocalcisome-like organelles in eggs of the insect vector Rhodnius prolixus. METHODOLOGY/PRINCIPAL FINDINGS: Characterization of the elemental composition of electron-dense vesicles by electron probe X-ray microanalysis revealed a composition similar to that previously described for acidocalcisomes. Following subcellular fractionation experiments, fractions enriched in acidocalcisomes were obtained and characterized. Immunofluorescence showed that polyphosphate polymers and the vacuolar proton translocating pyrophosphatase (V-H(+)-PPase, considered as a marker for acidocalcisomes) are found in the same vesicles and that these organelles are mainly localized in the egg cortex. Polyphosphate quantification showed that acidocalcisomes contain a significant amount of polyphosphate detected at day-0 eggs. Elemental analyses of the egg fractions showed that 24.5±0.65% of the egg calcium are also stored in such organelles. During embryogenesis, incubation of acidocalcisomes with acridine orange showed that these organelles are acidified at day-3 (coinciding with the period of yolk mobilization) and polyphosphate quantification showed that the levels of polyphosphate tend to decrease during early embryogenesis, being approximately 30% lower at day-3 compared to day-0 eggs. CONCLUSIONS: We found that acidocalcisomes are present in the eggs and are the main storage compartments of polyphosphate and calcium in the egg yolk. As such components have been shown to be involved in a series of dynamic events that may control embryo growth, results reveal the potential involvement of a novel organelle in the storage and mobilization of inorganic elements to the embryo cells

    Calcium- and polyphosphate-containing acidic granules of sea urchin eggs are similar to acidocalcisomes, but are not the targets for NAADP

    Get PDF
    Acidocalcisomes are acidic calcium-storage compartments described from bacteria to humans and characterized by their high content in poly P (polyphosphate), a linear polymer of many tens to hundreds of Pi residues linked by high-energy phosphoanhydride bonds. In the present paper we report that millimolar levels of short-chain poly P (in terms of Pi residues) and inorganic PPi are present in sea urchin extracts as detected using 31P-NMR, enzymatic determinations and agarose gel electrophoresis. Poly P was localized to granules randomly distributed in the sea urchin eggs, as shown by labelling with the poly-P-binding domain of Escherichia coli exopolyphosphatase. These granules were enriched using iodixanol centrifugation and shown to be acidic and to contain poly P, as determined by Acridine Orange and DAPI (4′,6′-diamidino-2-phenylindole) staining respectively. These granules also contained large amounts of calcium, sodium, magnesium, potassium and zinc, as detected by X-ray microanalysis, and bafilomycin A1-sensitive ATPase, pyrophosphatase and exopolyphosphatase activities, as well as Ca2+/H+ and Na+/H+ exchange activities, being therefore similar to acidocalcisomes described in other organisms. Calcium release from these granules induced by nigericin was associated with poly P hydrolysis. Although NAADP (nicotinic acid–adenine dinucleotide phosphate) released calcium from the granule fraction, this activity was not significantly enriched as compared with the NAADP-stimulated calcium release from homogenates and was not accompanied by poly P hydrolysis. GPN (glycyl-L-phenylalanine-naphthylamide) released calcium when added to sea urchin homogenates, but was unable to release calcium from acidocalcisome-enriched fractions, suggesting that these acidic stores are not the targets for NAADP

    Oogenesis and egg development in triatomines: a biochemical approach

    No full text
    In triatomines, as well as in other insects, accumulation of yolk is a process in which an extra-ovarian tissue, the fat body, produces yolk proteins that are packed in the egg. The main protein, synthesized by the fat body, which is accumulated inside the oocyte, is vitellogenin. This process is also known as vitellogenesis. There are growing evidences in triatomines that besides fat body the ovary also produces yolk proteins. The way these yolk proteins enter the oocyte will be discussed. Yolk is a complex material composed of proteins, lipids, carbohydrates and other minor components which are packed inside the oocyte in an organized manner. Fertilization triggers embryogenesis, a process where an embryo will develop. During embryogenesis the yolk will be used for the construction of a new individual, the first instar nymph. The challenge for the next decade is to understand how and where these egg proteins are used up together with their non-protein components, in pace with the genetic program of the embryo, which enables cell differentiation (early phase of embryogenesis) and embryo differentiation (late phase) inside the egg.<br>Em triatomíneos, assim como em outros insetos, o acúmulo de vitelo é um processo no qual um tecido extraovariano, o corpo gorduroso, produz proteínas que são empacotadas no interior de um ovo. A principal proteína, sintetizada pelo corpo gorduroso, que é acumulada no interior de um ovócito, é a vitelogenina. Este processo é também conhecido por vitelogênese. Existem crescentes evidências em triatomíneos, que além do corpo gorduroso, o ovário também produz proteínas de vitelo. A forma como estas proteínas de vitelo entram nos ovócitos será aqui comentada. O vitelo é um material complexo composto por proteínas, lipídeos, carboidratos e outros compostos minoritários que são empacotados de uma maneira organizada no interior dos ovócitos. A fertilização dispara a embriogênese, um processo que culmina com o desenvolvimento do embrião. Durante a embriogênese o vitelo será utilizado para a construção de um novo indivíduo, a ninfa de primeiro estádio. O desafio para a próxima década é entender onde e como estas proteínas de vitelo são utilizadas junto com os seus componentes não protéicos, em compasso com o programa genético do embrião, que comanda a diferenciação celular (fase inicial da embriogênese) e diferenciação do embrião (fase final da embriogênese) no interior do ovo

    Proteomic View of the Venom from the Fire Ant Solenopsis invicta Buren

    No full text
    Fire ants are well-known by their aggressive stinging behavior, causing many stinging incidents of medical importance. The limited availability of fire ant venom for scientific and clinical uses has restricted, up to now, the knowledge about the biochemistry, immunology, and pharmacology of these venoms. For this study, S. invicta venom was obtained commercially and used for proteomic characterization. For this purpose, the combination of gel-based and gel-free proteomic strategies was used to assign the proteomic profile of the venom from the fire ant S. invicta. This experimental approach permitted the identification of 46 proteins, which were organized into four different groups according to their potential role in fire ant venom: true venom components, housekeeping proteins, body muscle proteins, and proteins involved in chemical communication. The active venom components that may not present toxic roles were classified into three subgroups according to their potential functions: self-venom protection, colony asepsis, and chemical communication. Meanwhile, the proteins classified as true toxins, based on their functions after being injected into the victims' bodies by the fire ants, were classified in five other subgroups: proteins influencing the homeostasis of the victims, neurotoxins, proteins that promote venom diffusion, proteins that cause tissue damage/inflammation, and allergens.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    Bacterial community composition shifts in the gut of Periplaneta americana fed on different lignocellulosic materials

    No full text
    ABSTRACT: Cockroaches are insects that can accommodate diets of different composition, including lignocellulosic materials. Digestion of these compounds is achieved by the insect’s own enzymes and also by enzymes produced by gut symbionts. The presence of different and modular bacterial phyla on the cockroach gut tract suggests that this insect could be an interesting model to study the organization of gut bacterial communities associated with the digestion of different lignocellulosic diets. Thus, changes in the diversity of gut associated bacterial communities of insects exposed to such diets could give useful insights on how to improve hemicellulose and cellulose breakdown systems. In this work, through sequence analysis of 16S rRNA clone libraries, we compared the phylogenetic diversity and composition of gut associated bacteria in the cockroach Periplaneta americana collected in the wild-types or kept on two different diets: sugarcane bagasse and crystalline cellulose. These high fiber diets favor the predominance of some bacterial phyla, such as Firmicutes, when compared to wild-types cockroaches. Our data show a high bacterial diversity in P. americana gut, with communities composed mostly by the phyla Bacteroidetes, Firmicutes, Proteobacteria and Synergistetes. Our data show that the composition and diversity of gut bacterial communities could be modulated by diet composition. The increased presence of Firmicutes in sugarcane bagasse and crystalline cellulose-fed animals suggests that these bacteria are strongly involved in lignocellulose digestion in cockroach guts. BACKGROUND: Cockroaches are omnivorous animals that can incorporate in their diets food of different composition, including lignocellulosic materials. Digestion of these compounds is achieved by the insect’s own enzymes and also by enzymes produced by gut symbiont. However, the influence of diet with different fiber contents on gut bacterial communities and how this affects the digestion of cockroaches is still unclear. The presence of some bacterial phyla on gut tract suggests that cockroaches could be an interesting model to study the organization of gut bacterial communities during digestion of different lignocellulosic diets. Knowledge about the changes in diversity of gut associated bacterial communities of insects exposed to such diets could give interesting insights on how to improve hemicellulose and cellulose breakdown systems. METHODOLOGY/PRINCIPAL FINDINGS: We compared the phylogenetic diversity and composition of gut associated bacteria in the cockroach P. americana caught on the wild or kept on two different diets: sugarcane bagasse and crystalline cellulose. For this purpose we constructed bacterial 16S rRNA gene libraries which showed that a diet rich in cellulose and sugarcane bagasse favors the predominance of some bacterial phyla, more remarkably Firmicutes, when compared to wild cockroaches. Rarefaction analysis, LIBSHUFF and UniFrac PCA comparisons showed that gene libraries of wild insects were the most diverse, followed by sugarcane bagasse fed and then cellulose fed animals. It is also noteworthy that cellulose and sugarcane bagasse gene libraries resemble each other. CONCLUSION/SIGNIFICANCE: Our data show a high bacterial diversity in P. americana gut, with communities composed mostly by the phyla Bacteroidetes, Firmicutes, Proteobacteria and Synergistetes. The composition and diversity of gut bacterial communities could be modulated by font of diet composition. The increased presence of Firmicutes in sugarcane bagasse and crystalline cellulose-fed animals suggests that these bacteria are strongly involved in lignocellulose digestion in cockroach guts

    Proteomic View of the Venom from the Fire Ant <i>Solenopsis invicta</i> Buren

    No full text
    Fire ants are well-known by their aggressive stinging behavior, causing many stinging incidents of medical importance. The limited availability of fire ant venom for scientific and clinical uses has restricted, up to now, the knowledge about the biochemistry, immunology, and pharmacology of these venoms. For this study, <i>S. invicta</i> venom was obtained commercially and used for proteomic characterization. For this purpose, the combination of gel-based and gel-free proteomic strategies was used to assign the proteomic profile of the venom from the fire ant <i>S. invicta</i>. This experimental approach permitted the identification of 46 proteins, which were organized into four different groups according to their potential role in fire ant venom: true venom components, housekeeping proteins, body muscle proteins, and proteins involved in chemical communication. The active venom components that may not present toxic roles were classified into three subgroups according to their potential functions: self-venom protection, colony asepsis, and chemical communication. Meanwhile, the proteins classified as true toxins, based on their functions after being injected into the victims’ bodies by the fire ants, were classified in five other subgroups: proteins influencing the homeostasis of the victims, neurotoxins, proteins that promote venom diffusion, proteins that cause tissue damage/inflammation, and allergens
    corecore