27 research outputs found

    Partitioning the Heritability of Tourette Syndrome and Obsessive Compulsive Disorder Reveals Differences in Genetic Architecture

    Get PDF
    The direct estimation of heritability from genome-wide common variant data as implemented in the program Genome-wide Complex Trait Analysis (GCTA) has provided a means to quantify heritability attributable to all interrogated variants. We have quantified the variance in liability to disease explained

    Partitioning the Heritability of Tourette Syndrome and Obsessive Compulsive Disorder Reveals Differences in Genetic Architecture

    Get PDF

    Epigenomic modifications in modern and ancient genomes

    No full text
    Abstract Epigenetic changes have been identified as a major driver of fundamental metabolic pathways. More specifically, the importance of epigenetic regulatory mechanisms for biological processes like speciation and embryogenesis has been well documented and revealed the direct link between epigenetic modifications and various diseases. In this review, we focus on epigenetic changes in animals with special attention on human DNA methylation utilizing ancient and modern genomes. Acknowledging the latest developments in ancient DNA research, we further discuss paleoepigenomic approaches as the only means to infer epigenetic changes in the past. Investigating genome-wide methylation patterns of ancient humans may ultimately yield in a more comprehensive understanding of how our ancestors have adapted to the changing environment, and modified their lifestyles accordingly. We discuss the difficulties of working with ancient DNA in particular utilizing paleoepigenomic approaches, and assess new paleoepigenomic data, which might be helpful in future studies

    Genome-wide association study of pediatric obsessive-compulsive traits: shared genetic risk between traits and disorder

    Full text link
    Using a novel trait-based measure, we examined genetic variants associated with obsessive-compulsive (OC) traits and tested whether OC traits and obsessive-compulsive disorder (OCD) shared genetic risk. We conducted a genome-wide association analysis (GWAS) of OC traits using the Toronto Obsessive-Compulsive Scale (TOCS) in 5018 unrelated Caucasian children and adolescents from the community (Spit for Science sample). We tested the hypothesis that genetic variants associated with OC traits from the community would be associated with clinical OCD using a meta-analysis of all currently available OCD cases. Shared genetic risk was examined between OC traits and OCD in the respective samples using polygenic risk score and genetic correlation analyses. A locus tagged by rs7856850 in an intron of PTPRD (protein tyrosine phosphatase δ) was significantly associated with OC traits at the genome-wide significance level (p = 2.48 × 10−8). rs7856850 was also associated with OCD in a meta-analysis of OCD case/control genome-wide datasets (p = 0.0069). The direction of effect was the same as in the community sample. Polygenic risk scores from OC traits were significantly associated with OCD in case/control datasets and vice versa (p’s < 0.01). OC traits were highly, but not significantly, genetically correlated with OCD (rg = 0.71, p = 0.062). We report the first validated genome-wide significant variant for OC traits in PTPRD, downstream of the most significant locus in a previous OCD GWAS. OC traits measured in the community sample shared genetic risk with OCD case/control status. Our results demonstrate the feasibility and power of using trait-based approaches in community samples for genetic discovery

    Genome-wide association study of obsessive-compulsive disorder

    Get PDF
    Obsessive-compulsive disorder (OCD) is a common, debilitating neuropsychiatric illness with complex genetic etiology. The International OCD Foundation Genetics Collaborative (IOCDF-GC) is a multi-national collaboration established to discover the genetic variation predisposing to OCD. A set of individuals affected with DSM-IV OCD, a subset of their parents, and unselected controls, were genotyped with several different Illumina SNP microarrays. After extensive data cleaning, 1465 cases, 5557 ancestry-matched controls and 400 complete trios remained, with a common set of 469 410 autosomal and 9657 X-chromosome single nucleotide polymorphisms (SNPs). Ancestry-stratified case-control association analyses were conducted for three genetically-defined subpopulations and combined in two meta-analyses, with and without the trio-based analysis. In the case-control analysis, the lowest two P-values were located within DLGAP1 (P=2.49 × 10(-6) and P=3.44 × 10(-6)), a member of the neuronal postsynaptic density complex. In the trio analysis, rs6131295, near BTBD3, exceeded the genome-wide significance threshold with a P-value=3.84 × 10(-8). However, when trios were meta-analyzed with the case-control samples, the P-value for this variant was 3.62 × 10(-5), losing genome-wide significance. Although no SNPs were identified to be associated with OCD at a genome-wide significant level in the combined trio-case-control sample, a significant enrichment of methylation QTLs (P<0.001) and frontal lobe expression quantitative trait loci (eQTLs) (P=0.001) was observed within the top-ranked SNPs (P<0.01) from the trio-case-control analysis, suggesting these top signals may have a broad role in gene expression in the brain, and possibly in the etiology of OCD

    Employed in Conflict: Explaining Social Policy Preferences of a Tripartite Labour Market

    No full text

    Cross-Disorder Genome-Wide Analyses Suggest a Complex Genetic Relationship Between Tourette's Syndrome and OCD

    No full text
    corecore