30 research outputs found
Ariel - Volume 4 Number 6
Editors
David A. Jacoby
Eugenia Miller
Tom Williams
Associate Editors
Paul Bialas
Terry Burt
Michael Leo
Gail Tenikat
Editor Emeritus and Business Manager
Richard J. Bonnano
Movie Editor
Robert Breckenridge
Staff
Richard Blutstein
Mary F. Buechler
J.D. Kanofsky
Rocket Weber
David Maye
Synchronized turbo apoptosis induced by cold-shock
In our research on the role of apoptosis in the pathogenesis of the autoimmune disease systemic lupus erythematosus (SLE), we aim to evaluate the effects of early and late apoptotic cells and blebs on antigen presenting cells. This requires the in vitro generation of sufficiently large and homogeneous populations of early and late apoptotic cells. Here, we present a quick method encountered by serendipity that results in highly reproducible synchronized homogeneous apoptotic cell populations. In brief, granulocytic 32Dcl3 cells are incubated on ice for 2 h and subsequently rewarmed at 37°C. After 30–90 min at 37°C more than 80–90% of the cells become early apoptotic (Annexin V positive/propidium iodide negative). After 24 h of rewarming at 37°C 98% of the cells were late apoptotic (secondary necrotic; Annexin V positive/propidium iodide positive). Cells already formed apoptotic blebs at their cell surface after approximately 20 min at 37°C. Inter-nucleosomal chromatin cleavage and caspase activation were other characteristics of this cold-shock-induced process of apoptosis. Consequently, apoptosis could be inhibited by a caspase inhibitor. Finally, SLE-derived anti-chromatin autoantibodies showed a high affinity for apoptotic blebs generated by cold-shock. Overall, cold-shock induced apoptosis is achieved without the addition of toxic compounds or antibodies, and quickly leads to synchronized homogeneous apoptotic cell populations, which can be applied for various research questions addressing apoptosis
Chronicity of sleep problems in children with chronic illness: a longitudinal population-based study
<p>Abstract</p> <p>Background</p> <p>The aim of this study was to examine the chronicity of sleep problems in children with chronic illness, and potential predictors of sleep problems.</p> <p>Methods</p> <p>Using data from a longitudinal total population study in Norway, The Bergen Child Study, data on sleep problems, chronic illness and potential confounders were assessed at ages 79 and 1113.</p> <p>Results</p> <p>295 of 4025 (7.3%) children had a chronic illness, and the prevalence of chronic sleep problems was significantly higher in this group compared to children without chronic illness (6.8% versus 3.6%). Sleep problems at the first wave increased the risk of sleep problems at the second wave, also when adjusting for potential confounders (odds-ratio = 5.41). Hyperactivity and emotional problems were also independent risk factors for later sleep problems.</p> <p>Conclusion</p> <p>These findings call for increased awareness and development of treatment strategies of sleep problems in children with chronic illness.</p
Diurnal preference and sleep quality: same genes? A study of Young Adult twins
The aims of this study were to examine the genetic and environmental influences on diurnal preference and sleep quality, the association between these phenotypes, the genetic and environmental influences on this association, and the magnitude of overlap between these influences. Using a twin design, data on diurnal preference (measured by the Morningness-Eveningness Questionnaire) and sleep quality (measured by the Pittsburgh Sleep Quality Index) were collected from 420 monozygotic twins, 773 dizygotic twins, and 329 siblings (mode age = 20 yrs, range = 18–27yrs) from a population-based twin registry across the UK. Univariate analyses indicated that dominance genetic influence accounted for 52% and non-shared environment 48% of variance in diurnal preference. For sleep quality, additive genetic influence explained 43% and non-shared environment 57% of the variance. The bivariate analysis indicated a significant association between greater eveningness preference and poorer sleep quality (r = .27). There was substantial overlap in the additive genetic influences on both phenotypes (rA= .57), and overlap in the dominance genetic influences common to both phenotypes was almost absolute (rD = .99). Overlap in non-shared environment was much smaller (rE = .02). Additive genetic influence accounted for 2% of the association, dominance genetic influence accounted for 94%, and non-shared environmental influences accounted for the remaining 4%. The substantial overlap in genetic influence between these phenotypes indicates that similar genes are important for diurnal preference and sleep quality. Therefore, those genes already known to influence one phenotype may be possible candidates to explore with regards to the other phenotype
Microstructure of Common Reef-Building Coral Genera Acropora, Pocillopora, Goniastrea and Porites : Constraints on Spatial Resolution in Geochemical Sampling
Scleractinian corals are increasingly used as recorders of modern and paleoclimates. The microstructure of four common reef-building coral genera is documented here: Acropora, Pocillopora, Goniastrea, and Porites. This study highlights the complexity and spatial variability of skeletal growth in different coral genera and suggests that a single growth model is too generalized to allow the accurate depiction of the variability observed in the four genera studied. New models must be introduced in order for coral skeletogenesis to be understood adequately to allow coral skeletons to serve as repositories of temporally constrained geochemical data. Owing to differences in microstructural patterns in different genera, direct observation of microstructural elements and growth lines may be necessary to allow microsamples to be placed into series that represent temporal sequences with known degrees of time averaging. Such data are critical for constraining microsampling strategies aimed at developing true time series geochemical data at very fine spatial and temporal scales