150 research outputs found

    Transcription factor HNF1β and novel partners affect nephrogenesis

    Get PDF
    Heterozygous mutations of the tissue-specific transcription factor hepatocyte nuclear factor (HNF)1β, cause maturity onset diabetes of the young (MODY5) and kidney anomalies including agenesis, hypoplasia, dysplasia and cysts. Because of these renal anomalies, HNF1β is classified as a CAKUT (congenital anomalies of the kidney and urinary tract) gene. We searched for human fetal kidney proteins interacting with the N-terminal region of HNF1β using a bacterial two-hybrid system and identified five novel proteins along with the known partner DCoH. The interactions were confirmed for four of these proteins by GST pull-down assays. Overexpression of two proteins, E4F1 and ZFP36L1, in Xenopus embryos interfered with pronephros formation. Further, in situ hybridization showed overlapping expression of HNF1β, E4F1 and ZFP36L1 in the developing pronephros. HNF1β is present largely in the nucleus where it colocalized with E4F1. However, ZFP36L1 was located predominantly in the cytoplasm. A nuclear function for ZFP36L1 was shown as it was able to reduce HNF1β transactivation in a luciferase reporter system. Our studies show novel proteins may cooperate with HNF1β in human metanephric development and propose that E4F1 and ZFP36L1 are CAKUT genes. We searched for mutations in the open reading frame of the ZFP36L1 gene in 58 patients with renal anomalies but found none

    Challenging Perceptions of Disability through Performance Poetry Methods: The "Seen but Seldom Heard" Project.

    Get PDF
    This paper considers performance poetry as a method to explore lived experiences of disability. We discuss how poetic inquiry used within a participatory arts-based research framework can enable young people to collectively question society’s attitudes and actions towards disability. Poetry will be considered as a means to develop a more accessible and effective arena in which young people with direct experience of disability can be empowered to develop new skills that enable them to tell their own stories. Discussion of how this can challenge audiences to critically reflect upon their own perceptions of disability will also be developed

    Recessive mutations in the INS gene result in neonatal diabetes through reduced insulin biosynthesis

    Get PDF
    Heterozygous coding mutations in the INS gene that encodes preproinsulin were recently shown to be an important cause of permanent neonatal diabetes. These dominantly acting mutations prevent normal folding of proinsulin, which leads to beta-cell death through endoplasmic reticulum stress and apoptosis. We now report 10 different recessive INS mutations in 15 probands with neonatal diabetes. Functional studies showed that recessive mutations resulted in diabetes because of decreased insulin biosynthesis through distinct mechanisms, including gene deletion, lack of the translation initiation signal, and altered mRNA stability because of the disruption of a polyadenylation signal. A subset of recessive mutations caused abnormal INS transcription, including the deletion of the C1 and E1 cis regulatory elements, or three different single base-pair substitutions in a CC dinucleotide sequence located between E1 and A1 elements. In keeping with an earlier and more severe beta-cell defect, patients with recessive INS mutations had a lower birth weight (-3.2 SD score vs. -2.0 SD score) and were diagnosed earlier (median 1 week vs. 10 weeks) compared to those with dominant INS mutations. Mutations in the insulin gene can therefore result in neonatal diabetes as a result of two contrasting pathogenic mechanisms. Moreover, the recessively inherited mutations provide a genetic demonstration of the essential role of multiple sequence elements that regulate the biosynthesis of insulin in man

    Epithelial Immunization Induces Polyfunctional CD8+ T Cells and Optimal Mousepox Protection.

    Get PDF
    We assessed several routes of immunization with vaccinia virus (VACV) in protecting mice against ectromelia virus (ECTV). By a wide margin, skin scarification provided the greatest protection. Humoral immunity and resident-memory T cells notwithstanding, several approaches revealed that circulating, memory CD8(+) T cells primed via scarification were functionally superior and conferred enhanced virus control. Immunization via the epithelial route warrants further investigation, as it may also provide enhanced defense against other infectious agents

    Species-specific differences in the expression of the HNF1A, HNF1B and HNF4A genes

    Get PDF
    Background: The HNF1A, HNF1B and HNF4A genes are part of an autoregulatory network in mammalian pancreas, liver, kidney and gut. The layout of this network appears to be similar in rodents and humans, but inactivation of HNF1A, HNF1B or HNF4A genes in animal models cause divergent phenotypes to those seen in man. We hypothesised that some differences may arise from variation in the expression profile of alternatively processed isoforms between species. Methodology/Principal Findings: We measured the expression of the major isoforms of the HNF1A, HNF1B and HNF4A genes in human and rodent pancreas, islet, liver and kidney by isoform-specific quantitative real-time PCR and compared their expression by the comparative Ct (??Ct) method. We found major changes in the expression profiles of the HNF genes between humans and rodents. The principal difference lies in the expression of the HNF1A gene, which exists as three isoforms in man, but as a single isoform only in rodents. More subtle changes were to the balance of HNF1B and HNF4A isoforms between species; the repressor isoform HNF1B(C) comprised only 6% in human islets compared with 24–26% in rodents (p = 0.006) whereas HNF4A9 comprised 22% of HNF4A expression in human pancreas but only 11% in rodents (p = 0.001). Conclusions/Significance: The differences we note in the isoform-specific expression of the human and rodent HNF1A, HNF1B and HNF4A genes may impact on the absolute activity of these genes, and therefore on the activity of the pancreatic transcription factor network as a whole. We conclude that alterations to expression of HNF isoforms may underlie some of the phenotypic variation caused by mutations in these genes

    Permanent Neonatal Diabetes Caused by Creation of an Ectopic Splice Site within the INS Gene

    Get PDF
    PublishedCase ReportsJournal ArticleResearch Support, Non-U.S. Gov'tBACKGROUND: The aim of this study was to characterize the genetic etiology in a patient who presented with permanent neonatal diabetes at 2 months of age. METHODOLOGY/PRINCIPAL FINDINGS: Regulatory elements and coding exons 2 and 3 of the INS gene were amplified and sequenced from genomic and complementary DNA samples. A novel heterozygous INS mutation within the terminal intron of the gene was identified in the proband and her affected father. This mutation introduces an ectopic splice site leading to the insertion of 29 nucleotides from the intronic sequence into the mature mRNA, which results in a longer and abnormal transcript. CONCLUSIONS/SIGNIFICANCE: This study highlights the importance of routinely sequencing the exon-intron boundaries and the need to carry out additional studies to confirm the pathogenicity of any identified intronic genetic variants.Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM)Instituto de Salud Carlos III of the Spanish Ministry of HealthFIS-programsWellcome Trus

    Experimental Infection of Cynomolgus Macaques (Macaca fascicularis) with Aerosolized Monkeypox Virus

    Get PDF
    Monkeypox virus (MPXV) infection in humans results in clinical symptoms very similar to ordinary smallpox. Aerosol is a route of secondary transmission for monkeypox, and a primary route of smallpox transmission in humans. Therefore, an animal model for aerosol exposure to MPXV is needed to test medical countermeasures. To characterize the pathogenesis in cynomolgus macaques (Macaca fascicularis), groups of macaques were exposed to four different doses of aerosolized MPXV. Blood was collected the day before, and every other day after exposure and assessed for complete blood count (CBC), clinical chemistry analysis, and quantitative PCR. Macaques showed mild anorexia, depression, and fever on day 6 post-exposure. Lymphadenopathy, which differentiates monkeypox from smallpox, was observed in exposed macaques around day 6 post-exposure. CBC and clinical chemistries showed abnormalities similar to human monkeypox cases. Whole blood and throat swab viral loads peaked around day 10, and in survivors, gradually decreased until day 28 post-exposure. Survival was not dose dependent. As such, doses of 4×104 PFU, 1×105 PFU, or 1×106 PFU resulted in lethality for 70% of the animals, whereas a dose of 4×105 PFU resulted in 85% lethality. Overall, cynomolgus macaques exposed to aerosolized MPXV develop a clinical disease that resembles that of human monkeypox. These findings provide a strong foundation for the use of aerosolized MPXV exposure of cynomolgus macaques as an animal model to test medical countermeasures against orthopoxviruses
    corecore