1,437 research outputs found

    TIPS: a system for automated image-based phenotyping of maize tassels

    Get PDF
    Abstract Background The maize male inflorescence (tassel) produces pollen necessary for reproduction and commercial grain production of maize. The size of the tassel has been linked to factors affecting grain yield, so understanding the genetic control of tassel architecture is an important goal. Tassels are fragile and deform easily after removal from the plant, necessitating rapid measurement of any shape characteristics that cannot be retained during storage. Some morphological characteristics of tassels such as curvature and compactness are difficult to quantify using traditional methods, but can be quantified by image-based phenotyping tools. These constraints necessitate the development of an efficient method for capturing natural-state tassel morphology and complementary automated analytical methods that can quickly and reproducibly quantify traits of interest such as height, spread, and branch number. Results This paper presents the Tassel Image-based Phenotyping System (TIPS), which provides a platform for imaging tassels in the field immediately following removal from the plant. TIPS consists of custom methods that can quantify morphological traits from profile images of freshly harvested tassels acquired with a standard digital camera in a field-deployable light shelter. Correlations between manually measured traits (tassel weight, tassel length, spike length, and branch number) and image-based measurements ranged from 0.66 to 0.89. Additional tassel characteristics quantified by image analysis included some that cannot be quantified manually, such as curvature, compactness, fractal dimension, skeleton length, and perimeter. TIPS was used to measure tassel phenotypes of 3530 individual tassels from 749 diverse inbred lines that represent the diversity of tassel morphology found in modern breeding and academic research programs. Repeatability ranged from 0.85 to 0.92 for manually measured phenotypes, from 0.77 to 0.83 for the same traits measured by image-based methods, and from 0.49 to 0.81 for traits that can only be measured by image analysis. Conclusions TIPS allows morphological features of maize tassels to be quantified automatically, with minimal disturbance, at a scale that supports population-level studies. TIPS is expected to accelerate the discovery of associations between genetic loci and tassel morphology characteristics, and can be applied to maize breeding programs to increase productivity with lower resource commitment

    Distribution of endogenous NO regulates early gravitropic response and PIN2 localization in arabidopsis roots

    Get PDF
    High-resolution and automated image analysis of individual roots demonstrated that endogenous nitric oxide (NO) contribute significantly to gravitropism of Arabidopsis roots. Lowering of endogenous NO concentrations strongly reduced and even reversed gravitropism, resulting in upward bending, without affecting root growth rate. Notably, the asymmetric accumulation of NOalong the upper and lower sides of roots correlated with a positive gravitropic response. Detection of NO by the specific DAF-FM DA fluorescent probe revealed that NO was higher at the lower side of horizontally-oriented roots returning to initial values 2h after the onset of gravistimulation. We demonstrate that NO promotes plasma membrane re-localization of PIN2 in epidermal cells, which is required during the early root gravitropic response. The dynamic and asymmetric localization of both auxin and NO is critical to regulate auxin polar transport during gravitropism. Our results collectively suggest that, although auxin and NO crosstalk occurs at different levels of regulation, they converge in the regulation of PIN2 membrane trafficking in gravistimulated roots, supporting the notion that a temporally and spatially coordinated network of signal molecules could participate in the early phases of auxin polar transport during gravitropism.Fil: Paris, Ramiro. Universidad Nacional de Mar del Plata; ArgentinaFil: Vazquez, María M.. Universidad Nacional de Mar del Plata; ArgentinaFil: Graziano, Magdalena. Universidad Nacional de Mar del Plata; ArgentinaFil: Terrile, Maria Cecilia. Universidad Nacional de Mar del Plata; ArgentinaFil: Miller, Nathan D.. University Of Wisconsin-madison; Estados UnidosFil: Spalding, Edgar P.. University Of Wisconsin-madison; Estados UnidosFil: Otegui, Marisa S.. University Of Wisconsin-madison;Fil: Casalongue, Claudia. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; Argentin

    An Automated Image Analysis Pipeline Enables Genetic Studies of Shoot and Root Morphology in Carrot (Daucus carota L.)

    Get PDF
    Carrot is a globally important crop, yet efficient and accurate methods for quantifying its most important agronomic traits are lacking. To address this problem, we developed an automated image analysis platform that extracts components of size and shape for carrot shoots and roots, which are necessary to advance carrot breeding and genetics. This method reliably measured variation in shoot size and shape, petiole number, petiole length, and petiole width as evidenced by high correlations with hundreds of manual measurements. Similarly, root length and biomass were accurately measured from the images. This platform also quantified shoot and root shapes in terms of principal components, which do not have traditional, manually measurable equivalents. We applied the pipeline in a study of a six-parent diallel population and an F2 mapping population consisting of 316 individuals. We found high levels of repeatability within a growing environment, with low to moderate repeatability across environments. We also observed co-localization of quantitative trait loci for shoot and root characteristics on chromosomes 1, 2, and 7, suggesting these traits are controlled by genetic linkage and/or pleiotropy. By increasing the number of individuals and phenotypes that can be reliably quantified, the development of a rapid, automated image analysis pipeline to measure carrot shoot and root morphology will expand the scope and scale of breeding and genetic studies

    Genome-wide association analysis of stalk biomass and anatomical traits in maize.

    Get PDF
    BackgroundMaize stover is an important source of crop residues and a promising sustainable energy source in the United States. Stalk is the main component of stover, representing about half of stover dry weight. Characterization of genetic determinants of stalk traits provide a foundation to optimize maize stover as a biofuel feedstock. We investigated maize natural genetic variation in genome-wide association studies (GWAS) to detect candidate genes associated with traits related to stalk biomass (stalk diameter and plant height) and stalk anatomy (rind thickness, vascular bundle density and area).ResultsUsing a panel of 942 diverse inbred lines, 899,784 RNA-Seq derived single nucleotide polymorphism (SNP) markers were identified. Stalk traits were measured on 800 members of the panel in replicated field trials across years. GWAS revealed 16 candidate genes associated with four stalk traits. Most of the detected candidate genes were involved in fundamental cellular functions, such as regulation of gene expression and cell cycle progression. Two of the regulatory genes (Zmm22 and an ortholog of Fpa) that were associated with plant height were previously shown to be involved in regulating the vegetative to floral transition. The association of Zmm22 with plant height was confirmed using a transgenic approach. Transgenic lines with increased expression of Zmm22 showed a significant decrease in plant height as well as tassel branch number, indicating a pleiotropic effect of Zmm22.ConclusionSubstantial heritable variation was observed in the association panel for stalk traits, indicating a large potential for improving useful stalk traits in breeding programs. Genome-wide association analyses detected several candidate genes associated with multiple traits, suggesting common regulatory elements underlie various stalk traits. Results of this study provide insights into the genetic control of maize stalk anatomy and biomass

    Reef fishes at all trophic levels respond positively to effective marine protected areas

    Get PDF
    Marine Protected Areas (MPAs) offer a unique opportunity to test the assumption that fishing pressure affects some trophic groups more than others. Removal of larger predators through fishing is often suggested to have positive flow-on effects for some lower trophic groups, in which case protection from fishing should result in suppression of lower trophic groups as predator populations recover. We tested this by assessing differences in the trophic structure of reef fish communities associated with 79 MPAs and open-access sites worldwide, using a standardised quantitative dataset on reef fish community structure. The biomass of all major trophic groups (higher carnivores, benthic carnivores, planktivores and herbivores) was significantly greater (by 40% - 200%) in effective no-take MPAs relative to fished open-access areas. This effect was most pronounced for individuals in large size classes, but with no size class of any trophic group showing signs of depressed biomass in MPAs, as predicted from higher predator abundance. Thus, greater biomass in effective MPAs implies that exploitation on shallow rocky and coral reefs negatively affects biomass of all fish trophic groups and size classes. These direct effects of fishing on trophic structure appear stronger than any top down effects on lower trophic levels that would be imposed by intact predator populations. We propose that exploitation affects fish assemblages at all trophic levels, and that local ecosystem function is generally modified by fishing

    Machine learning-enabled phenotyping for GWAS and TWAS of WUE traits in 869 field-grown sorghum accessions

    Get PDF
    Sorghum (Sorghum bicolor) is a model C4 crop made experimentally tractable by extensive genomic and genetic resources. Biomass sorghum is studied as a feedstock for biofuel and forage. Mechanistic modeling suggests that reducing stomatal conductance (gs) could improve sorghum intrinsic water use efficiency (iWUE) and biomass production. Phenotyping to discover genotype-to-phenotype associations remains a bottleneck in understanding the mechanistic basis for natural variation in gs and iWUE. This study addressed multiple methodological limitations. Optical tomography and a machine learning tool were combined to measure stomatal density (SD). This was combined with rapid measurements of leaf photosynthetic gas exchange and specific leaf area (SLA). These traits were the subject of genome-wide association study and transcriptome-wide association study across 869 field-grown biomass sorghum accessions. The ratio of intracellular to ambient CO2 was genetically correlated with SD, SLA, gs, and biomass production. Plasticity in SD and SLA was interrelated with each other and with productivity across wet and dry growing seasons. Moderate-to-high heritability of traits studied across the large mapping population validated associations between DNA sequence variation or RNA transcript abundance and trait variation. A total of 394 unique genes underpinning variation in WUE-related traits are described with higher confidence because they were identified in multiple independent tests. This list was enriched in genes whose Arabidopsis (Arabidopsis thaliana) putative orthologs have functions related to stomatal or leaf development and leaf gas exchange, as well as genes with nonsynonymous/missense variants. These advances in methodology and knowledge will facilitate improving C4 crop WUE
    corecore