34 research outputs found

    Life Science on the International Space Station Using the Next Generation of Cargo Vehicles

    Get PDF
    With the retirement of the Space Shuttle and the transition of the International Space Station (ISS) from assembly to full laboratory capabilities, the opportunity to perform life science research in space has increased dramatically, while the operational considerations associated with transportation of the experiments has changed dramatically. US researchers have allocations on the European Automated Transfer Vehicle (ATV) and Japanese H-II Transfer Vehicle (HTV). In addition, the International Space Station (ISS) Cargo Resupply Services (CRS) contract will provide consumables and payloads to and from the ISS via the unmanned SpaceX (offers launch and return capabilities) and Orbital (offers only launch capabilities) resupply vehicles. Early requirements drove the capabilities of the vehicle providers; however, many other engineering considerations affect the actual design and operations plans. To better enable the use of the International Space Station as a National Laboratory, ground and on-orbit facility development can augment the vehicle capabilities to better support needs for cell biology, animal research, and conditioned sample return. NASA Life scientists with experience launching research on the space shuttle can find the trades between the capabilities of the many different vehicles to be confusing. In this presentation we will summarize vehicle and associated ground processing capabilities as well as key concepts of operations for different types of life sciences research being launched in the cargo vehicles. We will provide the latest status of vehicle capabilities and support hardware and facilities development being made to enable the broadest implementation of life sciences research on the ISS

    ISS Utilization

    Get PDF
    Research and technology opportunities onboard the International Space Station provide an unparalleled opportunity to understand how gravity influences physical and life sciences in a lab environment, as well as the Space Station’s location in low earth orbit provides a proving ground for materials testing, technology advancement, and Earth and space observations. Our panel represents a wide array of experts to introduce us to this extraordinary capability to advance mankind using the ISS research and development platform

    Hybrid Inflatable Pressure Vessel

    Get PDF
    Figure 1 shows a prototype of a large pressure vessel under development for eventual use as a habitable module for long spaceflight (e.g., for transporting humans to Mars). The vessel is a hybrid that comprises an inflatable shell attached to a rigid central structural core. The inflatable shell is, itself, a hybrid that comprises (1) a pressure bladder restrained against expansion by (2) a web of straps made from high-strength polymeric fabrics. On Earth, pressure vessels like this could be used, for example, as portable habitats that could be set up quickly in remote locations, portable hyperbaric chambers for treatment of decompression sickness, or flotation devices for offshore platforms. In addition, some aspects of the design of the fabric straps could be adapted to such other items as lifting straps, parachute straps, and automotive safety belts. Figure 2 depicts selected aspects of the design of a vessel of this type with a toroidal configuration. The bladder serves as an impermeable layer to keep air within the pressure vessel and, for this purpose, is sealed to the central structural core. The web includes longitudinal and circumferential straps. To help maintain the proper shape upon inflation after storage, longitudinal and circumferential straps are indexed together at several of their intersections. Because the web is not required to provide a pressure seal and the bladder is not required to sustain structural loads, the bladder and the web can be optimized for their respective functions. Thus, the bladder can be sealed directly to the rigid core without having to include the web in the seal substructure, and the web can be designed for strength. The ends of the longitudinal straps are attached to the ends of the rigid structural core by means of clevises. Each clevis pin is surrounded by a roller, around which a longitudinal strap is wrapped to form a lap seam with itself. The roller is of a large diameter chosen to reduce bending of the fibers in the strap. The roller also serves to equalize the load in the portions of the strap on both sides of the clevis pin. The lap seam is formed near the clevis by use of a tapered diamond stitch: This stitch is designed specifically to allow fibers in the stitch and strap to relax under load in such a manner that the load becomes more nearly evenly distributed among all fibers in the stitch region. Thus, the tapered diamond stitch prevents load concentrations that could cause premature failure of the strap and thereby increases the strength of the strap/structural-core joint. The lap seam can be rated at >90 percent of the strength of the strap material

    A review of symptomatic leg length inequality following total hip arthroplasty

    Get PDF
    Leg length inequality (LLI) following total hip replacement is a complication which features increasingly in the recent literature. The definition of LLI is complicated by lack of consensus regarding radiological measurement, clinical measurement and the incomplete relationship between LLI and associated symptoms. This paper reviews 79 reports relating to LLI post hip replacement, detailing definitions and classification and highlighting patient populations prone to symptomatic LLI. While there is no universal definition of LLI, there is a broad consensus that less than 10 mm of difference on AP view plain radiographs is clinically acceptable. There are few techniques described that consistently produce a postoperative LLI of less than this magnitude. Where postoperative LLI exists, lengthening appears to cause more problems than shortening. In cases of mild LLI, non-surgical management produces adequate outcomes in the majority of cases, with functional LLI cases doing better than those with true LLI. Operative correction is effective in half of cases, even where nerve palsy is present, and remains an important option of last resort. Poor outcomes in patients with LLI may be minimised if individuals at risk are identified and counselled appropriately

    Ontology of knowledge management systems elements.

    No full text
    Knowledge management often refers to various theories and definitions. However, there is a lack of consensus on what exactly knowledge management is and what constitutes a knowledge management system. We are engaged in research into the development of knowledge management systems from principles of practical knowledge management uncovered by a thorough analysis of the literature. As a precursor to field work with ‘knowledge practitioners’ we have conducted our analyses on the ‘practices’ embodied in seminal work of scholars, even as they have changed for individual researcher over time. Thus this paper explains our approach in attempting to identify elements of knowledge management systems according to scholars’ texts in the literature

    Closure of Regenerative Life Support Systems: Results of the Lunar-Mars Life Support Test Project

    No full text
    Future long duration human exploration missions away from Earth will require closed-loop regenerative life support systems to reduce launch mass, reduce dependency on resupply and increase the level of mission self sufficiency. Such systems may be based on the integration of biological and physiocochemical processes to produce potable water, breathable atmosphere and nutritious food from metabolic and other mission wastes. Over the period 1995 to 1998 a series of ground-based tests were conducted at the National Aeronautics and Space Administration, Johnson Space Center, to evaluate the performance of advanced closed-loop life support technologies with real human metabolic and hygiene loads. Named the Lunar-Mars Life Support Test Project (LMLSTP), four integrated human tests were conducted with increasing duration, complexity and closure. The first test, LMLSTP Phase I, was designed to demonstrate the ability of higher plants to revitalize cabin atmosphere. A single crew member spent 15 days within an atmospherically closed chamber containing 11.2 square meters of actively growing wheat. Atmospheric carbon dioxide and oxygen levels were maintained by control of the rate of photosynthesis through manipulation of light intensity or the availability of carbon dioxide and included integrated physicochemical systems. During the second and third tests, LMLSTP Phases II & IIa, four crew members spent 30 days and 60 days, respectively, in a larger sealed chamber. Advanced physicochemical life support hardware was used to regenerate the atmosphere and produce potable water from wastewater. Air revitalization was accomplished by using a molecular sieve and a Sabatier processor for carbon dioxide absorption and reduction, respectively, with oxygen generation performed by water hydrolysis. Production of potable water from wastewater included urine treatment (vapor compression distillation), primary treatment (ultrafiltration/reverse osmosis and multi-filtration) and post processing. For the Phase II test the water recovery rate ranged from 95 to 98%, depending on the processor. LMLSTP Phase III, the fourth test of the series, had a duration of 91 days and included four crew members. The test demonstrated an integration of physicochemical and biological technologies for air revitalization, water recovery and waste processing. Wheat supplemented the physicochemical air revitalization systems by providing approximately 25% of the oxygen required for the 4-person crew. The water recovery system included immobilized cell and trickling filter bioreactors for primary water treatment, reverse osmosis and air evaporation systems for secondary water treatment, followed by post processing. The 8 day initial supply of water was recycled through the chamber and crew 10 times over the course of the test. Grain from the wheat together with fresh lettuce from a small growth chamber within the crew chamber provided supplementation to the stored food system, but at a level less than 5% of the crew s caloric requirement. An incinerator was used to demonstrate mineralization of the crew s solid waste, with the combustion products (mainly carbon dioxide) returned to the wheat for conversion to oxygen

    Advantages of Distributed Humidity and Environmental Control

    No full text

    Preparation and Characterization of Spironolactone-Loaded Gelucire Microparticles Using Spray-Drying Technique

    No full text
    The basic objectives of this study were to prepare and characterize solid dispersions of poorly soluble drug spironolactone (SP) using gelucire carriers by spray-drying technique. The properties of the microparticles produced were studied by differential scanning calorimetry (DSC), scanning electron microscopy, saturation solubility, encapsulation efficiency, and dissolution studies. The absence of SP peaks in DSC profiles of microparticles suggests the transformation of crystalline SP into an amorphous form. The in vitro dissolution test showed a significant increase in the dissolution rate of microparticles as compared with pure SP and physical mixtures (PMs) of drug with gelucire carriers. Therefore, the dissolution rate of poorly water-soluble drug SP can be significantly enhanced by the preparation of solid dispersion using spray-drying techniqueKing Saud Universit
    corecore