108 research outputs found
Applying Fishers' Ecological Knowledge to Construct Past and Future Lobster Stocks in the Juan Fernández Archipelago, Chile
Over-exploited fisheries are a common feature of the modern world and a range of solutions including area closures (marine reserves; MRs), effort reduction, gear changes, ecosystem-based management, incentives and co-management have been suggested as techniques to rebuild over-fished populations. Historic accounts of lobster (Jasus frontalis) on the Chilean Juan Fernández Archipelago indicate a high abundance at all depths (intertidal to approximately 165 m), but presently lobsters are found almost exclusively in deeper regions of their natural distribution. Fishers' ecological knowledge (FEK) tells a story of serial depletion in lobster abundance at fishing grounds located closest to the fishing port with an associated decline in catch per unit effort (CPUE) throughout recent history. We have re-constructed baselines of lobster biomass throughout human history on the archipelago using historic data, the fishery catch record and FEK to permit examination of the potential effects of MRs, effort reduction and co-management (stewardship of catch) to restore stocks. We employed a bioeconomic model using FEK, fishery catch and effort data, underwater survey information, predicted population growth and response to MR protection (no-take) to explore different management strategies and their trade-offs to restore stocks and improve catches. Our findings indicate that increased stewardship of catch coupled with 30% area closure (MR) provides the best option to reconstruct historic baselines. Based on model predictions, continued exploitation under the current management scheme is highly influenced by annual fluctuations and unsustainable. We propose a community-based co-management program to implement a MR in order to rebuild the lobster population while also providing conservation protection for marine species endemic to the Archipelago
Ecosystem effects of fishing & El Niño at the Galápagos Marine Reserve
The Galápagos Archipelago is home to a diverse range of marine bioregions due to the confluence of several cold and warm water currents, resulting in some of the most productive tropical marine ecosystems in the world. These ecosystems are strongly influenced by El Niño events which can reduce primary production by an order of magnitude, dramatically reducing energy available throughout the food web. Fisheries are an important component of the local economy, although artisanal and illegal overfishing have dramatically reduced the productivity of invertebrate and finfish resources in recent decades, resulting in reductions in catches for local fishers. The regionally-endemic sailfin grouper (Myctereoperca olfax), locally known as bacalao, was once the most important fished species in the Galápagos, but is now listed as vulnerable by the IUCN due to its limited range and dramatic declines in catch over time. It is unknown how reduction of this predatory species has affected ecosystem structure and function. In the absence of stock assessments, we used an estimate of unfished bacalao biomass from fishers’ ecological knowledge along with unfished biomass estimates of other heavily exploited stocks—lobster (Panulirus penicillatus and P. gracilis) and sea cucumber (Isostichopus fuscus)—to create historical, unfished versions of existing modern day ecosystem models. We used the unfished and modern versions of the ecosystem models to test the ecosystem effects of bacalao exploitation at the Bolivar Channel, located in the cold, west upwelling bioregion of the archipelago during both El Niño and non El Niño years, and at Floreana Island, in the warmer, central bioregion. Fishers’ ecological knowledge indicates that at present, the biomass of bacalao is at least seven times lower than when unfished. This reduced bacalao biomass is linked with a greatly reduced ecosystem role compared to when unfished, and ecosystem role is further reduced in El Niño years. Allowing bacalao populations to rebuild to at least half of unfished biomass would partially restore their role within these ecosystems, while also resulting in greater fisheries catches. Comparing ecosystem impacts caused by fishing and El Niño, fishing has had a greater negative impact on bacalao ecosystem role than regular El Niño events
Decadal changes in biomass and distribution of key fisheries species on Newfoundland’s Grand Banks
Canadian fisheries management has embraced the precautionary approach and the incorporation
of ecosystem information into decision-making processes. Accurate estimation of
fish stock biomass is crucial for ensuring sustainable exploitation of marine resources. Spatio-
temporal models can provide improved indices of biomass as they capture spatial and
temporal correlations in data and can account for environmental factors influencing biomass
distributions. In this study, we developed a spatio-temporal generalized additive model (st-
GAM) to investigate the relationships between bottom temperature, depth, and the biomass
of three key fished species on The Grand Banks: snow crab (Chionoecetes opilio), yellowtail
flounder (Limanda ferruginea), and Atlantic cod (Gadus morhua). Our findings revealed
changes in the centre of gravity of Atlantic cod that could be related to a northern shift of the
species within the Grand Banks or to a faster recovery of the 2J3KL stock. Atlantic cod also
displayed hyperaggregation behaviour with the species showing a continuous distribution
over the Grand Banks when biomass is high. These findings suggest a joint stock assessment
between the 2J3KL and 3NO stocks would be advisable. However, barriers may need
to be addressed to achieve collaboration between the two distinct regulatory bodies (i.e.,
DFO and NAFO) in charge of managing the stocks. Snow crab and yellowtail flounder centres
of gravity have remained relatively constant over time. We also estimated novel indices
of biomass, informed by environmental factors. Our study represents a step towards ecosystem-
based fisheries management for the highly dynamic Grand Banks
Disentangling diverse responses to climate change among global marine ecosystem models
Climate change is warming the ocean and impacting lower trophic level (LTL) organisms. Marine ecosystem models can provide estimates of how these changes will propagate to larger animals and impact societal services such as fisheries, but at present these estimates vary widely. A better understanding of what drives this inter-model variation will improve our ability to project fisheries and other ecosystem services into the future, while also helping to identify uncertainties in process understanding. Here, we explore the mechanisms that underlie the diversity of responses to changes in temperature and LTLs in eight global marine ecosystem models from the Fisheries and Marine Ecosystem Model Intercomparison Project (FishMIP). Temperature and LTL impacts on total consumer biomass and ecosystem structure (defined as the relative change of small and large organism biomass) were isolated using a comparative experimental protocol. Total model biomass varied between −35% to +3% in response to warming, and -17% to +15% in response to LTL changes. There was little consensus about the spatial redistribution of biomass or changes in the balance between small and large organisms (ecosystem structure) in response to warming, an LTL impacts on total consumer biomass varied depending on the choice of LTL forcing terms. Overall, climate change impacts on consumer biomass and ecosystem structure are well approximated by the sum of temperature and LTL impacts, indicating an absence of nonlinear interaction between the models’ drivers. Our results highlight a lack of theoretical clarity about how to represent fundamental ecological mechanisms, most importantly how temperature impacts scale from individual to ecosystem level, and the need to better understand the two-way coupling between LTL organisms and consumers. We finish by identifying future research needs to strengthen global marine ecosystem modelling and improve projections of climate change impacts
Cross-over study of novice intubators performing endotracheal intubation in an upright versus supine position
There are a number of potential physical advantages to performing orotracheal intubation in an upright position. The objective of this study was to measure the success of intubation of a simulated patient in an upright versus supine position by novice intubators after brief training. This was a cross-over design study in which learners (medical students, physician assistant students, and paramedic students) intubated mannequins in both a supine (head of the bed at 0°) and upright (head of bed elevated at 45°) position. The primary outcome of interest was successful intubation of the trachea. Secondary outcomes included log time to intubation, Cormack–Lehane view obtained, Percent of Glottic Opening score, provider assessment of difficulty, and overall provider satisfaction with the position. There were a total of 126 participants: 34 medical students, 84 physician assistant students, and 8 paramedic students. Successful tracheal intubation was achieved in 114 supine attempts (90.5 %) and 123 upright attempts (97.6 %; P = 0.283). Upright positioning was associated with significantly faster log time to intubation, higher likelihood of achieving Grade I Cormack–Lehane view, higher Percent of Glottic Opening score, lower perceived difficulty, and higher provider satisfaction. A subset of 74 participants had no previous intubation training or experience. For these providers, there was a non-significant trend toward improved intubation success with upright positioning vs supine positioning (98.6 % vs. 87.8 %, P = 0.283). For all secondary outcomes in this group, upright positioning significantly outperformed supine positioning
Feasibility of upright patient positioning and intubation success rates at two academic emergency departments
Objectives
Endotracheal intubation is most commonly taught and performed in the supine position. Recent literature suggests that elevating the patient's head to a more upright position may decrease peri-intubation complications. However, there is little data on the feasibility of upright intubation in the emergency department. The goal of this study was to measure the success rate of emergency medicine residents performing intubation in supine and non-supine, including upright positions.
Methods
This was a prospective observational study. Residents performing intubation recorded the angle of the head of the bed. The number of attempts required for successful intubation was recorded by faculty and espiratory therapists. The primary outcome of first past success was calculated with respect to three groups: 0–10° (supine), 11–44° (inclined), and ≥ 45° (upright); first past success was also analyzed in 5 degree angle increments.
Results
A total of 231 intubations performed by 58 residents were analyzed. First pass success was 65.8% for the supine group, 77.9% for the inclined group, and 85.6% for the upright group (p = 0.024). For every 5 degree increase in angle, there was increased likelihood of first pass success (AOR = 1.11; 95% CI = 1.01–1.22, p = 0.043).
Conclusions
In our study emergency medicine residents had a high rate of success intubating in the upright position. While this does not demonstrate causation, it correlates with recent literature challenging the traditional supine approach to intubation and indicates that further investigation into optimal positioning during emergency department intubations is warranted
Oceans and human health : navigating changes on Canada’s coasts
Ocean conditions can affect human health in a variety of ways that are often overlooked and unappreciated. Oceans adjacent to Canada are affected by many anthropogenic stressors, with implications for human health and well-being. Climate change further escalates these pressures and can expose coastal populations to unique health hazards and distressing conditions. However, current research efforts, education or training curriculums, and policies in Canada critically lack explicit consideration of these ocean–public health linkages. The objective of this paper is to present multiple disciplinary perspectives from academics and health practitioners to inform the development of future directions for research, capacity development, and policy and practice at the interface of oceans and human health in Canada. We synthesize major ocean and human health linkages in Canada, and identify climate-sensitive drivers of change, drawing attention to unique considerations in Canada. To support effective, sustained, and equitable collaborations at the nexus of oceans and human health, we recommend the need for progress in three critical areas: (i) holistic worldviews and perspectives, (ii) capacity development, and (iii) structural supports. Canada can play a key role in supporting the global community in addressing the health challenges of climate and ocean changes
Comparative analysis of different survey methods for monitoring fish assemblages in coastal habitats
Coastal ecosystems are among the most productive yet increasingly threatened marine ecosystems worldwide. Particularly vegetated habitats, such as eelgrass (Zostera marina) beds, play important roles in providing key spawning, nursery and foraging habitats for a wide range of fauna. To properly assess changes in coastal ecosystems and manage these critical habitats, it is essential to develop sound monitoring programs for foundation species and associated assemblages. Several survey methods exist, thus understanding how different methods perform is important for survey selection. We compared two common methods for surveying macrofaunal assemblages: beach seine netting and underwater visual census (UVC). We also tested whether assemblages in shallow nearshore habitats commonly sampled by beach seines are similar to those of nearby eelgrass beds often sampled by UVC. Among five estuaries along the Southern Gulf of St. Lawrence, Canada, our results suggest that the two survey methods yield comparable results for species richness, diversity and evenness, yet beach seines yield significantly higher abundance and different species composition. However, sampling nearshore assemblages does not represent those in eelgrass beds despite considerable overlap and close proximity. These results have important implications for how and where macrofaunal assemblages are monitored in coastal ecosystems. Ideally, multiple survey methods and locations should be combined to complement each other in assessing the entire assemblage and full range of changes in coastal ecosystems, thereby better informing coastal zone management
An RxLR effector from phytophthora infestans prevents re-localisation of two plant NAC transcription factors from the endoplasmic reticulum to the nucleus
The plant immune system is activated following the perception of exposed, essential and invariant microbial molecules that are recognised as non-self. A major component of plant immunity is the transcriptional induction of genes involved in a wide array of defence responses. In turn, adapted pathogens deliver effector proteins that act either inside or outside plant cells to manipulate host processes, often through their direct action on plant protein targets. To date, few effectors have been shown to directly manipulate transcriptional regulators of plant defence. Moreover, little is known generally about the modes of action of effectors from filamentous (fungal and oomycete) plant pathogens. We describe an effector, called Pi03192, from the late blight pathogen Phytophthora infestans, which interacts with a pair of host transcription factors at the endoplasmic reticulum (ER) inside plant cells. We show that these transcription factors are released from the ER to enter the nucleus, following pathogen perception, and are important in restricting disease. Pi03192 prevents the plant transcription factors from accumulating in the host nucleus, revealing a novel means of enhancing host susceptibility
Recommended from our members
Potential impacts of climate change on agriculture and fisheries production in 72 tropical coastal communities
Climate change is expected to profoundly affect key food production sectors, including fisheries and agriculture. However, the potential impacts of climate change on these sectors are rarely considered jointly, especially below national scales, which can mask substantial variability in how communities will be affected. Here, we combine socioeconomic surveys of 3,008 households and intersectoral multi-model simulation outputs to conduct a sub-national analysis of the potential impacts of climate change on fisheries and agriculture in 72 coastal communities across five Indo-Pacific countries (Indonesia, Madagascar, Papua New Guinea, Philippines, and Tanzania). Our study reveals three key findings: First, overall potential losses to fisheries are higher than potential losses to agriculture. Second, while most locations (> 2/3) will experience potential losses to both fisheries and agriculture simultaneously, climate change mitigation could reduce the proportion of places facing that double burden. Third, potential impacts are more likely in communities with lower socioeconomic status
- …