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ABSTRACT

Coastal ecosystems are among the most productive yet increasingly threatened marine
ecosystems worldwide. Particularly vegetated habitats, such as eelgrass (Zostera marina)
beds, play important roles in providing key spawning, nursery and foraging habitats
for a wide range of fauna. To properly assess changes in coastal ecosystems and
manage these critical habitats, it is essential to develop sound monitoring programs
for foundation species and associated assemblages. Several survey methods exist, thus
understanding how different methods perform is important for survey selection. We
compared two common methods for surveying macrofaunal assemblages: beach seine
netting and underwater visual census (UVC). We also tested whether assemblages in
shallow nearshore habitats commonly sampled by beach seines are similar to those of
nearby eelgrass beds often sampled by UVC. Among five estuaries along the Southern
Gulf of St. Lawrence, Canada, our results suggest that the two survey methods yield
comparable results for species richness, diversity and evenness, yet beach seines yield
significantly higher abundance and different species composition. However, sampling
nearshore assemblages does not represent those in eelgrass beds despite considerable
overlap and close proximity. These results have important implications for how and
where macrofaunal assemblages are monitored in coastal ecosystems. Ideally, multiple
survey methods and locations should be combined to complement each other in
assessing the entire assemblage and full range of changes in coastal ecosystems, thereby
better informing coastal zone management.

Subjects Aquaculture, Fisheries and Fish Science, Biodiversity, Ecology, Environmental Sciences,
Marine Biology

Keywords Fish assemblage, Environmental monitoring, Beach seine, Coastal zone management,
Underwater visual census (UVC), Survey selection

INTRODUCTION

Field surveys are a common first step for many fundamental and applied ecological studies,
and provide an essential foundation for environmental management (Connolly, 1994;
Mapstone & Ayling, 1998; Hernandez et al., 2006; Franca, Costa & Cabral, 2009; Franga,
Costa ¢ Cabral, 2011). As anthropogenic impacts on natural ecosystems increase, mapping
and monitoring are increasingly valued as a means to quantify changes in the environment.
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Thus, the ability to complete accurate, rapid and cost-effective species surveys has become
an important conservation and management tool (Hughes, 1996; Schmitt, Sluka & Sullivan-
Sealey, 2002; Langlois et al., 2010; Murphy ¢ Jenkins, 2010).

For most natural communities, a variety of different survey methods exist; yet resulting
estimates of species abundance and diversity can vary with the survey method selected,
influencing both the precision and accuracy of the data (Connolly, 1994; Mapstone &
Ayling, 1998; Cété ¢ Perrow, 2006). Thus, data collected using different methods may
not be directly comparable due to survey biases. Given that survey results may be used
for conservation and management decisions, it is therefore important to evaluate how
different survey methods perform, and whether they can replace or complement each other
(Murphy & Jenkins, 2010; Ward-Paige, Flemming & Lotze, 2010).

In estuarine and coastal ecosystems, monitoring mobile macrofaunal assemblages,
particularly fish assemblages, requires underwater survey techniques. Commonly used
methods monitoring mobile macrofaunal assemblages in estuarine and coastal ecosystems
include beach seine netting, underwater visual census (UVC), baited remote underwater
video (BRUV), diver-operated stereo video, as well as more destructive methods such as
dredging/trawling, poisoning, and suction sampling (Harmelin-Vivien ¢ Francour, 1992;
Coté & Perrow, 2006; Murphy & Jenkins, 2010; Holmes et al., 2013). Both BRUV and stereo
video have the advantage of reduced diver error of size and abundance estimation, yet
BRUYV has been criticized for preferentially surveying greater numbers of large predatory
fish species, without seeing comparable changes in smaller herbivorous species (Watson
et al., 2005; Langlois et al., 2010). Additionally, both BRUV and stereo video have the
downside of increased survey equipment costs and data analysis time due to large amount
of footage (Willis, Millar & Babcock, 2000; Langlois et al., 2010).

In comparison, the beach seine is a simple, rapid and cost-effective way to sample
a relatively large, clearly defined area and allowing for live collection of individuals
(Piercer, Rasmussen & Leggett, 1990). However, it has been criticized for its variable capture
efficiencies; as the net may snag or roll allowing for escapees, small species may avoid
capture in depressions in the sea bed, faster swimming fish may vacate the area while
the seine is cast, and it can cause mortality of captured individuals, such as vulnerable
juvenile fish (Piercer, Rasmussen ¢ Leggett, 1990; Connolly, 1994; Weldon et al., 2004).
Also, dragging the net over the seafloor can cause some disturbance, and catching large
schools of fish that cannot be processed quickly may lead to some mortality (authors’
personal observation). Similar to the beach seine, when accessible from shore and a boat
is not required, visual surveys are simple and quick, quantitative and repeatable, can be
accurately done by relatively novice divers, and have minimal impact on the environment
(Harvey, Fletcher ¢ Shortis, 2001; Schmitt, Sluka & Sullivan-Sealey, 2002; Edgar, Barrett &
Morton, 2004; Ward-Paige ¢» Lotze, 2011). However, visual surveys also have biases; the
air-water interface in the diver mask leads to size magnification and changes in depth
perception (though methods exist to standardize size estimates), divers often under- or
overestimate the area sampled, and low visibility in turbid waters may lead to reduced
observations (Ross, Franklin & Weitman, 1969; Harvey, Fletcher & Shortis, 2001; Harvey et
al., 2004). Visual surveys can underestimate the abundance of the most common species,
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and species behaviour may affect the results as some species are attracted to, while others
may swim away from the diver (Brock, 1982; Chapman ¢ Atkinson, 1986; Dickens et al.,
2011). Visual surveys also often miss cryptic species; however, interference visual census
(IVC) is a technique which dismantles habitat to survey cryptic species, and can sample
these species better than nets. However, this requires sampling twice the amount of transects
and has a greater impact on the habitat (Beldade & Gongalves, 2007). Finally, since UVC
requires instantaneous identification of individuals in an open environment, it may result
in species misidentification. Despite the widespread use of both beach seines and UVC for
monitoring coastal ecosystems around the world, there are few studies that have evaluated
the comparability of these survey methods in different regions (Franco et al., 2012).

Another important question in the design of monitoring programs is where to perform
surveys. Most coastal ecosystems consist of a diverse set of habitats with various bottom
types, foundation species, depths, abiotic conditions and anthropogenic impacts, and
associated macrofaunal assemblages likely differ among different habitat types and human
impacts (Heck, Hays & Orth, 2003; Schmidt et al., 2011; Schein et al., 2012; Holmes et al.,
2013). Thus, depending on the goal of the monitoring program, it is important to decide
which survey methods to use, and where to perform them in order to gain the most
meaningful results. Broader assessments of fish assemblages in different habitats within and
among estuaries have been performed in Europe, albeit using more destructive trawl surveys
(Franga, Costa & Cabral, 2009; Franga, Costa & Cabral, 2011; Selleslagh et al., 2009).

Here, we use a case study from Atlantic Canada, where both beach seine and UVC surveys
have been used to monitor coastal fish assemblages at a regional scale, to assess differences
in survey methods and survey location. Since 2003, the Department of Fisheries and Oceans
(DFO) Community Aquatic Monitoring Program (CAMP) has been using beach seine
surveys in multiple estuaries along the coast of the southern Gulf of St. Lawrence (Fig. 1A) to
assess changes in coastal fish assemblages (Weldon et al., 2004). Data collection is frequently
completed by trained local community organizations, maximizing spatial and temporal
sampling. At the same time, researchers from Dalhousie University have been using UVC
surveys to assess macrofaunal assemblages in eelgrass beds among multiple estuaries in the
same region (Lotze et al., 2003; Coll et al., 2011; Schmidt, 2012; Schmidt et al., 2012). Many
estuaries in the southern Gulf of St. Lawrence are dominated by eelgrass (Zostera marina),
which has been designated an ecologically significant species (ESS, DFO, 2009) because it
provides important ecosystem services such as spawning, nursery and foraging habitat for
a wide range of associated species (Vandermeulen, 2005; Vandermeulen, 2009; DFO, 2009).
However, eelgrass habitats are threatened by a number of human impacts such as nutrient
loading and aquaculture operations (Lotze et al., 2003; Schein et al., 2012; Schmidt et al.,
20125 Skinner, Courtenay ¢ McKindsey, 2013). Currently, efforts are underway to develop
a monitoring framework for the region led by the Northumberland Strait Environmental
Monitoring Partnership (NorSt—-EMP; www.cwn-rce.ca/). One objective of this partnership
is to determine how and where to best monitor coastal fish assemblages and eelgrass beds.

The objectives of our study were to compare estuarine mobile macrofaunal assemblages
sampled by two commonly employed survey methods; beach seine and UVC, as well as
mobile macrofaunal assemblages found in two common habitats; nearshore and eelgrass.
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Figure 1 Map of (A) Atlantic Canada with the southern Gulf of St. Lawrence and Northumberland
Strait region of New Brunswick, (B) a close-up of the five estuaries sampled: LM, Laméque; SH, Shippa-
gan; KB, Kouchibouguac; BT, Bouctouche; CG, Cocagne, and (C) map of Cocagne Bay with long-term
CAMP study sites CG1 to CG6 (ESRI, 2011; Government of Canada GeoGratis, 2013).

The results have important implications for how and where to best sample coastal fish
assemblages to assess changes in the structure and functioning of coastal ecosystems. Our
results can be used for the design of NorSt—-EMP as well as other national or international
monitoring programs already using or adopting these common monitoring methods.

MATERIALS AND METHODS
Study sites

From August 6th—13th 2013, mobile macrofaunal assemblages were sampled among
five estuaries in the southern Gulf of St. Lawrence, Canada to assess among estuary
variability (Figs. 1A and 1B, Table S1). Estuaries were selected to be spread out along the
Northumberland coast, and within each estuary, one site was randomly selected from a pool
of four possible sites, located in the mid-estuary, about halfway between the river’s main
freshwater inflow and the estuary’s main outflow into the Gulf of St. Lawrence (Lotze ef al.,
2003). Within one of these five estuaries—Cocagne Bay—additional sampling of another
four sites was undertaken to assess within-estuary variability to compare to among-estuary
variability (Fig. 1C, Table S1). Sampling was undertaken during the summer due to
logistical constraints, but also because it has been shown to be the season with the greatest
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diversity in mobile macroinvertebrates, although spring and fall are important seasons for
fish spawning and recruitment (Schmidt ¢ Scheibling, 2007). All study sites were located
in sheltered areas and shallow waters (<2 m deep) with large (>50 m wide) continuous
eelgrass beds close to shore. Water temperatures ranged from 19.6 to 22.4 °C, salinities
from 22.6 to 27.2 PSU, and dissolved oxygen content from 5.2 to 13.8 mg/L (Table S1).

All procedures performed in this study involving animals were in accordance with the
ethical standards of the institutions at which the studies were conducted. The Dalhousie
University Committee on Laboratory Animals approval number is: #11-103. This field
research was conducted under the scientific licence to the Department of Fisheries and
Oceans, # SG-RHQ-13-089.

Sampling design

Our sampling aims were twofold: (i) to compare beach seine and visual census (UVC)
surveys in nearshore habitats within one estuary (Cocagne Bay) and among five estuaries;
(ii) to compare nearshore and eelgrass habitats among five estuaries (Table S1). All sampling
was completed between 9:00 and 16:00, and followed the design of existing survey protocols
by CAMP and Dalhousie (Weldon et al., 2004; Schmidt et al., 2011; Schmidt, 2012).

For the survey method comparison, at each of the nine study sites (Figs. 15 and 1C),
two 50 m transects were placed parallel to shore (at 5 m and 10 m distance from shore)
and left undisturbed for a minimum of 20 min prior to UVC nearshore sampling in order
to allow for any disturbance caused by placing the transects to subside. UVC nearshore
sampling was undertaken at high tide due to the shallow depths surveyed (0.75-1.5 m in
depth) and to survey mobile species that use the intertidal zone during the high tide (Fig.
2B). During high tide, two divers swam parallel, each on a separate transect. All mobile
macrofauna (fish and crustaceans such as crabs) within 2 m of either side of the transect
line were counted, sized and identified to species level if possible. Hence, the total area
sampled per transect was 200 m? (Fig. 2B). Diver estimates of fish length were compared
to species length at maturity to determine life stages and separate juveniles from adults
(Table S2). UVC surveys were undertaken with a minimum of two metres of visibility to
ensure that results were not being driven by ability to observe species. We recognize that
the use of stereo video would aid in species identification and size estimation, however we
did not have access to this equipment at the time of the surveys, and previous surveys had
not employed it.

A minimum of 20 min after the UVC was completed to attempt to minimize any
changes in assemblage due to time of day, tide or change in currents, a beach seine survey
was performed in the same area using a 30 m long, 2 m deep seine net with 6 mm mesh
size throughout (Fig. 2A). One end of the net was anchored on the beach and the other
end was walked perpendicular to the shore out to 15 m, then parallel to the shore for 15 m,
and then back to the beach, covering a total area of 225 m? (Fig. 2A). Once cast, the net
was pulled to shore from both ends forcing organisms into the central bag, from where
they were transferred into a live holding tank. All individuals were counted and identified
to species levels if possible, and had their life stage recorded as either young of the year or
adult based on size, before being released alive back into the water. In instances where the
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Figure 2 Sampling layout and photograph of (A) beach seine and (B) underwater visual census (UVC)
surveys in nearshore shallow water with marked distances from shore and survey lengths. Shaded areas
represent those sampled by the given method; a total of 225 m? in the beach seine and 200 m? in each
visual survey. UVC transect lines at 5 m and 10 m from shore are bolded (Photo credit: Heike Lotze).

volume of individuals collected rendered counting time harmful to the captured organisms,
rare individuals were counted first, while common species abundances were estimated by
subsamples of one dip net. The number typically caught in one dip net was multiplied by
the number of dip nets necessary to empty the whole holding tank.

For the habitat comparison between nearshore shallow waters and eelgrass beds among
five estuaries, UVC was performed using the same methods as above, but in the centre of
an eelgrass bed in close proximity (50-100 m) to, but slightly deeper (0.75-1.50 m deep)
than the nearshore (0-0.75 m deep) survey (Fig. 1B, Table S1). Water depths at the eelgrass
sites necessitated the use of SCUBA equipment when sampling, whereas the nearshore
shallow site sampling was completed using snorkelling gear. In both cases it was possible
to observe species found on the benthos as well as in the water column.

Data analysis

In order to evaluate within and among estuary variation explained by survey method and
habitat, we employed a multivariate approach with the factors: survey method (beach seine
vs. UVC) and habitat (nearshore vs. eelgrass). Additionally, for the within-estuary analysis,
we included the factor site, and habitat was nested within site. We tested for variation
in the abundance, richness, diversity, evenness, and composition of the fish and mobile
macrofauna assemblage explained by method at five sites within one estuary (Cocagne)
and among five estuaries. We also investigated the variation in abundance, richness,
diversity, evenness, and composition of the fish and mobile macrofauna assemblage
explained by habitat (nearshore vs. eelgrass) among five estuaries. Non-parametric
permutational analyses of variance (PERMANOVA) were performed using PRIMER
with PERMANOVA+ software (Anderson, Gorley ¢ Clark, 2008).
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To examine differences in the species composition, we used non-metric multidimen-
sional scaling (MDS) and multivariate PERMANOVA, based on a zero-adjusted Bray-Curtis
similarity matrix of log transformed species abundance data (Clarke ¢ Gorley, 2008a). Log
(x+1) transformation allows both rare and dominant species to more evenly influence the
sample similarity metric, while not completely disregarding species abundances (Clarke ¢
Gorley, 2008b). Additionally, we tested for homogeneity in dispersion (PERMDISP) of data
that might be explaining observed variation (Anderson, Gorley & Clark, 2008). Similarity
percentage (SIMPER) and principle coordinates (PCO) analyses were used to identify
which species contributed the most to the differences in species composition (there was
very high agreement between the tests, so only SIMPER results are presented), and separate
univariate PERMANOVA was used to test for significant differences in the abundance
of these species between survey methods and habitats (Clarke ¢ Gorley, 2008a; Anderson,
Gorley & Clark, 2008).

To investigate differences between survey methods (beach seine vs. UVC), the two shal-
low water visual transects (200 m? each) were pooled, creating one sample to be compared
with the beach seine survey (totalling 225 m?). Data were analyzed among the five estuaries
to test for differences among estuaries (n = 5), and within one estuary only (Cocagne Bay)
to assess within-estuary variability (n = 5). For the habitat comparison among the five
estuaries, we kept the two transects per habitat as separate samples. We assessed differences
in univariate summary measures including total abundance (per m?), species richness,
diversity (Shannon index) and evenness (Pielou index). Univariate PERMANOVA on the
zero-adjusted Bray-Curtis similarity matrix for total abundance and a Euclidean distance
matrix for richness, diversity and evenness was used to test if these summary measures
were different between survey methods and habitats (Clarke & Gorley, 2008a).

RESULTS

Comparison of survey methods

MDS plots show a clear distinction in species composition between the two survey methods
within Cocagne Bay and among the five estuaries (Fig. 3A and 3B), while PERMANOVA
identified significant differences in species composition among all sites and among estuaries,
but not within Cocagne Bay (Table 1). Interestingly, two separate groupings for UVC appear
among estuaries (Fig. 3B), where Cocagne and Bouctouche had been sampled before and
the other three estuaries after a strong rainfall, which reduced visibility and resulted in
lower abundance and species richness counts in Kouchibouguac, Shippagan and Lameque
(Fig. S1).

Total macrofaunal abundance varied strongly among study sites and between survey
methods (Fig. S1A). Abundances were higher with the beach seine (Fig. 4) among all sites
and among estuaries, but not within Cocagne Bay (Table 1). These results remained even
after one outlier with very high abundance was removed (beach seine at Cocagne 4, Fig.
S1A). Species richness, diversity and evenness showed strong variation among study sites
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Figure 3 MDS plots showing groupings of species composition by study site between (A) different sur-
vey methods (open circles = visual survey, grey squares = beach seine) within an estuary (n = 5), (B)
among estuaries (n = 5), and (C) different habitat types (open circles = shallow nearshore, black trian-
gles = eelgrass beds, n = 5 with 2 transects each). In (C) three outliers (one KB and one LM in shallow,
and one BT in eelgrass) were removed. See Fig. 1 for study site codes.
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Figure 4 Mean (+SE) (A) abundance, (B) species richness, (C) diversity and (D) evenness sampled by
visual surveys (light grey) and beach seines (dark grey) within one estuary, Cocagne Bay (n = 5), across
estuaries (n =>5).

Table 1 PERMANOVA results for differences in assemblage structure between survey methods (beach seine vs. visual census) within an estu-
ary (n = 5), among estuaries (n = 5), and among all sites (n = 9). All results are from univariate PERMANOVA, except for species composition,
which is from a multivariate analysis. Significant p-values (< 0.05) are indicated in bold.

Abundance Richness Diversity Evenness Composition
Pseudo-F P Pseudo-F P Pseudo-F b 4 Pseudo-F P Pseudo-F P
Within 1.28 0.29 0.79 0.44 1.34 0.28 0.90 0.35 1.35 0.23
Among 5.58 0.0086 3.90 0.13 1.39 0.11 1.06 0.31 4.23 0.0078

(Figs. SIB=S1D) but did not differ among areas in any of the study designs (Fig. 4 and
Table 1).

In total, 18 species of mobile macrofauna were encountered in the two survey methods
among all study sites (Fig. 5 and Table S3), with 13 species observed in the UVC and 16
species with the beach seine. Species that were only observed in the UVC included the
grubby and lady crab, while black-spotted and 9-spine stickleback and rock and mud
crabs were observed in higher abundance in the visual census (Fig. 5). In turn, species only
observed with the beach seine included gaspereau, striped bass, cunner, winter flounder and
other flounder, while Atlantic silverside, mummichog, three-spine stickleback, four-spine
stickleback, smooth flounder and green crab were observed in higher abundance with the
beach seine (Table S3).

SIMPER analysis identified that most of the variation between survey methods was driven
by two of the most abundant species, Atlantic silverside and mummichog, both within and
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Figure 5 Mean abundance (+SE) of species identified by beach seines (dark grey) and visual surveys
(white) in nearshore habitats (A) within one estuary, Cocagne Bay (n = 5) and (B) across estuaries (n =

5).

Table 2 Results of SIMPER analysis identifying the contribution of individual species to differences
in species composition between survey methods (beach seine vs. visual census) within one estuary and

Among all five estuaries, as well as univariate PERMANOVA results for differences in each species’
abundance between methods, except for juvenile flounder sp. which was only detected in the beach

seine. The total contribution explained by the species listed is 92.67% for within and 91.93% for among

estuaries. Significant p-values (<0.05) are indicated in bold.

SIMPER species Contribution (%) Pseudo-F P
Within estuary
Atlantic silverside 47.9 0.64 0.63
Mummichog 30.4 4.12 0.01
4-spine stickleback 10.0 0.45 0.97
Green crab 4.4 23.14 0.03
Among estuaries
Mummichog 50.6 8.52 0.02
Atlantic silverside 30.8 0.63 0.63
4-spine stickleback 7.3 0.27 1.00
Flounder species 3.3 NA NA

among estuaries (Table 2). Both species had higher average abundance with the beach seine

(Fig. 5), yet this was only statistically significant for mummichog (Table 2). Four-spine

stickleback also showed higher average abundance, not significantly different than the

beach seine, but had a much lower contribution to the difference in species composition

between survey methods both within (10.0%) and among (7.3%) estuaries (Table 2). Two

other species contributed less than 5% to the differences in species composition: green crab
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Table 3 PERMANOVA results and percent variation explained for differences in assemblage structure with site and habitat (nearshore vs. eel-
grass) nested in site (S). All are univariate PERMANOVA analyses, except species composition, which is a multivariate analysis. Significant p-values
(<0.05) are indicated in bold.

Site Habitat (S) Residuals
Pseudo-F P % variation Pseudo-F P % variation % variation
Abundance 1.89 0.13 27.4 3.43 0.002 34.4 29.1
Richness 1.35 0.31 9.6 3.82 0.019 19.5 15.2
Diversity 0.89 0.50 0 3.95 0.024 28.3 21.2
Evenness 1.66 0.29 17.2 2.63 0.094 22.1 22.3
Composition 1.14 0.30 13.9 2.55 0.001 40.2 45.5

was significantly more abundant with the beach seine within Cocagne Bay, and juvenile
flounder sp. was only sampled with the beach seine among estuaries (Table 2).

Comparison of habitat differences

Total abundance, richness, diversity and evenness of mobile macrofauna varied among
estuaries, yet were on average higher in eelgrass than nearshore habitats (Fig. 6, Fig. S2).
The factor habitat was statistically significant for all except for evenness, and generally

explained a larger proportion of the variation in the model than the residuals (Table 3),
while site alone explained less variation and was not significant.

In total, 14 mobile macrofaunal species were encountered in the two habitats (Fig. 7,
Table S4), of which 10 were detected in nearshore and 12 in eelgrass surveys. Two species,
green crab and grubby, were only detected nearshore, and mummichog was more abundant
nearshore. In turn, four species were only found in eelgrass, including gaspereau, black-
spotted stickleback and common starfish; however, both gaspereau and black-spotted
stickleback had previously been observed in the nearshore during the methods comparison
(Fig. 5).

Despite some overlap, the MDS plot (Fig. 3C) and multivariate PERMANOVA (Table 3)
confirmed that species composition differed significantly between the two habitats, and
habitat explained 40.2% of the variation. SIMPER analysis indicated that Atlantic silverside
explained 57.8% of the variation in species composition, while mummichog (12.1%), rock
Crab (11.5%), 4-spine stickleback (7.19%) and black spotted stickleback explained much
less (3.25%). All these species had higher abundance in eelgrass, except for mummichog
(Fig. 7); however, these differences were only statistically significant for Atlantic silverside,
where habitat explained 47.0% of the variation in abundance (Table 4). For the other
species, most of the variance was unexplained.

DISCUSSION

Selecting proper survey methods and locations is an essential step in the design of
monitoring programs to inform management and conservation in coastal ecosystems
around the world. Our study compared two widely used survey methods for coastal
fish assemblages, underwater visual census (UVC) and beach seine netting, and assessed
whether shallow nearshore assemblages commonly sampled by beach seines are comparable
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Figure 6 Mean (+SE) (A) abundance, (B) species richness, (C) diversity and (D) evenness sampled by

UVC surveys in nearshore shallow (light grey) and nearby UVC surveys in eelgrass beds (dark grey)

among five estuaries (n =5).

Table 4 Results of SIMPER analysis identifying the contribution of individual species to differences in species composition between habitats
(nearshore vs. eelgrass), and univariate PERMANOV A results for each species’ abundance for the factors site and habitat with percent of varia-
tion explained. The total contribution explained by the species listed is 91.79%. Significant p-values (<0.05) are indicated in bold; NA indicates that
no tests could be performed because of zero occurrences.

SIMPER species Contribution (%) Site Habitat (S) Residuals
Pseudo-F p % variation Pseudo-F p % variation % variation

Atlantic silverside 57.78 0.57 0.80 0 4.12 0.04 47.0 37.6

Mummichog 12.07 0.87 0.56 0 1.38 0.31 19.4 39.2

Rock crab 11.51 0.54 0.82 0 NA NA NA 50.7

4-Spine stickleback 7.19 7.03 0.14 29.1 0.21 0.85 0 39.4

Black spotted stickleback 3.25 0.90 0.90 0 NA NA NA 52.7

to those in nearby eelgrass beds often surveyed by UVC. Our results indicate that both
survey methods yield comparable measures of species richness, diversity and evenness,

yet species composition differed and beach seine surveys gave higher abundance estimates
than UVC. Although the two methods are not directly comparable, ideally they should
complement each other to assess the entire coastal fish assemblage and monitor broader

changes in coastal ecosystems. Similarly, despite close proximity and considerable overlap,

we found distinct differences between assemblage structure sampled in eelgrass beds and

nearshore habitats. These results have important implications for how to compare already

existing long-term and large-scale survey data, and how best to design appropriate future
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(white) and nearby eelgrass (black) habitats.

monitoring programs for coastal macrofaunal assemblages based on species of interest that
can inform management of critical habitats at regional, national or international levels.

Survey method selection

Beach seine netting and UVC are two of the most commonly used methods for surveying
coastal fish or macrofauna assemblages because they are simple, fast, repeatable, cost-
effective and mostly non-destructive; yet both methods have known biases that explain the
results observed in our study (Brock, 1982; Piercer, Rasmussen ¢ Leggett, 1990; Connolly,
1994; Harvey et al., 2004; Weldon et al., 2004; Ward-Paige, Flemming ¢ Lotze, 2010; Dickens
et al., 2011; Franco et al., 2012). Generally, visual surveys work well when visibility is
high and for non-cryptic or sedentary species with neutral behavior toward a diver
(Coté & Perrow, 20065 Murphy & Jenkins, 2010; Franco et al., 2012). However, UVC can
underestimate the abundance of the most common species, with issues surrounding
counting large numbers of small, mobile individuals at once, and cryptic species hiding
in the seafloor or vegetation (Brock, 1982; Franco et al., 2012). This is supported by our
results, both within and among estuaries, with two of the most abundant species, Atlantic
silverside and mummichog, being less abundant in the UVC, and some highly cryptic
species being undetected (winter flounder, flounder species) or rarely detected (smooth
flounder) compared to the beach seine. Future surveys that employ the interference visual
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census (IVC) of cyptic fishes could address this shortcoming (Beldade ¢ Gongalves, 2007).
Three other species not observed in the UVC were quite rare mobile fishes (gaspereau,
striped bass, cunner), that may have avoided divers (Chapman & Atkinson, 1986). Finally, in
turbid waters with low visibility, UVC may result in reduced observations and consequently
underestimation of faunal abundance and richness, which we encountered at several study
sites after heavy rainfall.

Biases discussed for the beach seine are dominated by escapees due to net snagging or
rolling, fish swimming away when the net is cast, or individuals finding refuge in depressions
in the seabed (Piercer, Rasmussen & Leggett, 1990; Connolly, 1994; Weldon et al., 2004;
Franco et al., 2012). In our study, the beach seine surveys failed to detect two species,
grubby and lady crab, which were observed in the UVC, and yielded lower abundances
for rock crab, mud crab, black-spotted and 9-spine sticklebacks within or among estuary
comparisons. The grubby is a mobile fish that may have avoided the seine net or left the
area by the time the seine occurred. The lady crab is less mobile compared to the grubby
but may have taken refuge in a depression or under a rock, escaping capture by the seine.
These observations of the beach seine not detecting as many mobile species as UVC has
also been found in another study by Franco et al. (2012). Overall, the beach seine found
higher abundances for many species and more effectively detected rare or cryptic species
(see above), similar to another study that compared survey methods (Frarco et al., 2012).

Although species missed by one survey method will have influenced species composition,
none were identified by SIMPER analysis as important in driving differences in assemblage
composition, except for juvenile flounder, which explained 3.3% of the difference in
the within-estuary comparison. In contrast, the four SIMPER species explaining >90%
of the differences in the species composition (Atlantic silverside, mummichog, 4-spine
stickleback, green crab) were the most common species in our surveys, with generally higher
abundances in the beach seine. Thus, an underestimation of these common species by UVC
may have contributed to the significant difference in species composition between methods
(Brock, 1982). Lastly, since we pooled two nearshore transects to compare with one beach
seine, the UVC sampled a larger overall area than the beach seine, which may have increased
species richness (Soberon & Lorente, 1993). However, variability in terms of species richness
between the two nearshore transects prior to pooling was low (on average +1.66 species),
and repeating the analysis with just one transect per site did not change the overall results.

In summary, despite sampling in the same location under very similar conditions, the
beach seine and visual survey yielded different results in terms of total abundance and
distinct differences in assemblage composition, despite considerable overlap of detected
species. Thus, it is not possible to conclude which method provides a better summary of
the nearshore macrofaunal assemblage, and survey selection may depend on the survey
objective, the measures of interest (e.g., abundance vs. diversity), available resources
(e.g., beach seine vs. divers) and environmental conditions. If the nearshore habitat is
devoid of obstructions and algae or has low water visibility, the beach seine may better
sample rare, cryptic and the most common species. However, beach seines can have a
more destructive impact, in some cases leading to high faunal mortality (authors’ personal
observation), which can be avoided with visual surveys. Whichever method is chosen, it
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cannot be interchanged, and needs to stay consistent over long temporal or large spatial
scales to avoid sampling biases. Ideally, the two survey methods could go hand in hand,
complementing each other to assess broader changes in faunal assemblages and coastal

ecosystems over time and space.

Habitat differences

Foundation species, such as seagrasses are known to increase habitat complexity, which
is often positively correlated with adult faunal density, recruitment and post-settlement
survival, and negatively correlated with predation risk (Preisser ¢ Deegan, 1995; Heck,
Hays & Orth, 2003; Vandermeulen, 2005; Vandermeulen, 2009; Schmidt et al., 2011; Schein
et al., 2012). Thus, seagrass beds can support different macrofaunal assemblages compared
to unvegetated or unstructured habitats, but there can also be considerable overlap and
spill-over between adjacent habitats (Nagelkerken et al., 2001).

In our study, UVC surveys performed in shallow nearshore habitats yielded significant
differences in faunal assemblage structure compared to UVC in eelgrass beds, despite
their close proximity (Weldon et al., 2004). These results are consistent with other
studies reporting higher abundance, richness and diversity in seagrass beds compared
to unvegetated habitats (Preisser ¢» Deegan, 1995; Hughes et al., 2002; Heck, Hays ¢ Orth,
2003; Vandermeulen, 2005; Vandermeulen, 2009; Joseph, Locke & Godin, 2006; Schmidt et
al., 2011; Schein et al., 2012). This relationship likely exists because eelgrass plants provide
increased habitat complexity and structure, more ecological niches, a refuge from predation,
a less turbulent environment and more abundant and diverse food sources (Preisser ¢
Deegan, 1995; Heck, Hays ¢ Orth, 2003; Schmnidt et al., 2011). The only non-significant
measure in our study was evenness, suggesting that despite significant differences in species
richness and abundance, the assemblages have a similar distribution of the proportion of
individuals spread over several species, with two or three abundant, and many uncommon
species. However, on average evenness was higher in eelgrass beds compared to nearshore
habitats, also reported in a similar study comparing seagrass beds and sandy bottom
habitats in the Caribbean, which were attributed to differences in habitat complexity and
productivity (Nagelkerken ¢ Van der Velde, 2004).

In addition to summary measures of assemblage structure, species composition also
significantly differed between the two habitats. Two species, green crab and grubby,
were only found in nearshore habitat, although the grubby is thought to occur primarily
within eelgrass beds (Lazzari, Able & Fahay, 1988). Nagelkerken et al. (2001) suggested that
unvegetated habitats in close proximity to seagrass beds exhibit some species overlap due
to migration and spill-over, which may explain the presence of the grubby in nearhore
waters. As in the survey comparison above, the most common species contributed most
to differences in species composition, namely Atlantic silverside and rock crab more
abundant in eelgrass and mummichog more abundant nearshore. Similarly, Schein et al.
(2012) found that eelgrass beds were dominated by Atlantic silversides, and Heck er al.
(1995) found higher abundance of rock crabs in eelgrass beds compared to unvegetated
habitat. In contrast, mummichogs prefer muddier habitats dominated by macroalgae (such
as sea lettuce) than eelgrass (Finley et al., 2013). Thus, observed differences in the most
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common species and overall assemblage structure can be explained by habitat preferences
and are not outweighed by spill-over or connectivity between habitats.

Given the differences in assemblage structure between nearshore and eelgrass habitats,
nearshore surveys do not represent faunal assemblages in eelgrass beds. However, due
to their close proximity and likelihood of spill-over from and connectivity with seagrass
beds (Nagelkerken et al., 2001), nearshore assemblages are likely influenced by changes
within seagrass beds. Therefore, monitoring not just one, but multiple coastal habitats,
would provide the most valuable insight into overall changes in coastal ecosystems by
highlighting the importance of linkages between different habitats (Frarnca, Costa ¢ Cabral,
2009; Franga, Costa & Cabral, 2011; Selleslagh et al., 2009; Franco et al., 2012).

CONCLUSIONS

In the southern Gulf of St. Lawrence, Canada, two long-term and regional-scale monitoring
and research programs surveying coastal fish assemblages have been in place since 2003. Due
to different survey methods and survey locations used, results are not directly comparable
to each other in assessing broader changes in the entire assemblage. As new regional
monitoring programs are being developed or refined around the world, such as NorSt-
EMP in the Southern Gulf of St. Lawrence, multiple survey methods and habitats should
ideally be combined to assess long-term and large-scale changes in estuarine and coastal
ecosystems. In addition, the results of our study emphasize the ecological importance of
eelgrass beds which support significantly enhanced macrofaunal abundance and diversity
compared to surrounding unvegetated habitats.
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