9 research outputs found

    Pathogenic characteristics of persistent feline enteric coronavirus infection in cats

    Get PDF
    Feline coronaviruses (FCoV) comprise two biotypes: feline enteric coronaviruses (FECV) and feline infectious peritonitis viruses (FIPV). FECV is associated with asymptomatic persistent enteric infections, while FIPV causes feline infectious peritonitis (FIP), a usually fatal systemic disease in domestic cats and some wild Felidae. FIPV arises from FECV by mutation. FCoV also occur in two serotypes, I and II, of which the serotype I viruses are by far the most prevalent in the field. Yet, most of our knowledge about FCoV infections relates to serotype II viruses, particularly about the FIPV, mainly because type I viruses grow poorly in cell culture. Hence, the aim of the present work was the detailed study of the epidemiologically most relevant viruses, the avirulent serotype I viruses. Kittens were inoculated oronasally with different doses of two independent FECV field strains, UCD and RM. Persistent infection could be reproducibly established. The patterns of clinical symptoms, faecal virus shedding and seroconversion were monitored for up to 10 weeks revealing subtle but reproducible differences between the two viruses. Faecal virus, i.e. genomic RNA, was detected during persistent FECV infection only in the large intestine, downstream of the appendix, and could occasionally be observed also in the blood. The implications of our results, particularly our insights into the persistently infected state, are discussed

    Mouse Hepatitis Coronavirus RNA Replication Depends on GBF1-Mediated ARF1 Activation

    Get PDF
    Coronaviruses induce in infected cells the formation of double membrane vesicles, which are the sites of RNA replication. Not much is known about the formation of these vesicles, although recent observations indicate an important role for the endoplasmic reticulum in the formation of the mouse hepatitis coronavirus (MHV) replication complexes (RCs). We now show that MHV replication is sensitive to brefeldin A (BFA). Consistently, expression of a dominant-negative mutant of ARF1, known to mimic the action of the drug, inhibited MHV infection profoundly. Immunofluorescence analysis and quantitative electron microscopy demonstrated that BFA did not block the formation of RCs per se, but rather reduced their number. MHV RNA replication was not sensitive to BFA in MDCK cells, which are known to express the BFA-resistant guanine nucleotide exchange factor GBF1. Accordingly, individual knockdown of the Golgi-resident targets of BFA by transfection of small interfering RNAs (siRNAs) showed that GBF1, but not BIG1 or BIG2, was critically involved in MHV RNA replication. ARF1, the cellular effector of GBF1, also appeared to be involved in MHV replication, as siRNAs targeting this small GTPase inhibited MHV infection significantly. Collectively, our results demonstrate that GBF1-mediated ARF1 activation is required for efficient MHV RNA replication and reveal that the early secretory pathway and MHV replication complex formation are closely connected

    Topology and Membrane Anchoring of the Coronavirus Replication Complex: Not All Hydrophobic Domains of nsp3 and nsp6 Are Membrane Spanning▿ †

    No full text
    Coronaviruses express two very large replicase polyproteins, the 16 autoproteolytic cleavage products of which collectively form the membrane-anchored replication complexes. How these structures are assembled is still largely unknown, but it is likely that the membrane-spanning members of these nonstructural proteins (nsps) are responsible for the induction of the double-membrane vesicles and for anchoring the replication complexes to these membranes. For 3 of the 16 coronavirus nsps—nsp3, nsp4, and nsp6—multiple transmembrane domains are predicted. Previously we showed that, consistent with predictions, nsp4 occurs in membranes with both of its termini exposed in the cytoplasm (M. Oostra et al., J. Virol. 81:12323-12336, 2007). Strikingly, however, for both nsp3 and nsp6, predictions based on a multiple alignment of 27 coronavirus genome sequences indicate an uneven number of transmembrane domains. As a consequence, the proteinase domains present in nsp3 and nsp5 would be separated from their target sequences by the lipid bilayer. To look into this incongruity, we studied the membrane disposition of nsp3 and nsp6 of the severe acute respiratory syndrome coronavirus and murine hepatitis virus by analyzing tagged forms of the proteins expressed in cultured cells. Contrary to the predictions, in both viruses, both proteins had their amino terminus, as well as their carboxy terminus, exposed in the cytoplasm. We established that two of the three hydrophobic domains in nsp3 and six of the seven in nsp6 are membrane spanning. Subsequently, we verified that in nsp4, all four hydrophobic domains span the lipid bilayer. The occurrence of conserved non-membrane-spanning hydrophobic domains in nsp3 and nsp6 suggests an important function for these domains in coronavirus replication

    Protective Antiviral Immune Responses to Pseudorabies Virus Induced by DNA Vaccination Using Dimethyldioctadecylammonium Bromide as an Adjuvant

    Get PDF
    To enhance the efficacy of a DNA vaccine against pseudorabies virus (PRV), we evaluated the adjuvant properties of plasmids coding for gamma interferon or interleukin-12, of CpG immunostimulatory motifs, and of the conventional adjuvants dimethyldioctadecylammonium bromide in water (DDA) and sulfolipo-cyclodextrin in squalene in water. We demonstrate that a DNA vaccine combined with DDA, but not with the other adjuvants, induced significantly stronger immune responses than plasmid vaccination alone. Moreover, pigs vaccinated in the presence of DDA were protected against clinical disease and shed significantly less PRV after challenge infection. This is the first study to demonstrate that DDA, a conventional adjuvant, enhances DNA vaccine-induced antiviral immunity

    The Ubiquitin-Proteasome System Plays an Important Role during Various Stages of the Coronavirus Infection Cycle ▿

    No full text
    The ubiquitin-proteasome system (UPS) is a key player in regulating the intracellular sorting and degradation of proteins. In this study we investigated the role of the UPS in different steps of the coronavirus (CoV) infection cycle. Inhibition of the proteasome by different chemical compounds (i.e., MG132, epoxomicin, and Velcade) appeared to not only impair entry but also RNA synthesis and subsequent protein expression of different CoVs (i.e., mouse hepatitis virus [MHV], feline infectious peritonitis virus, and severe acute respiratory syndrome CoV). MHV assembly and release were, however, not appreciably affected by these compounds. The inhibitory effect on CoV protein expression did not appear to result from a general inhibition of translation due to induction of a cellular stress response by the inhibitors. Stress-induced phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) generally results in impaired initiation of protein synthesis, but the sensitivity of MHV infection to proteasome inhibitors was unchanged in cells lacking a phosphorylatable eIF2α. MHV infection was affected not only by inhibition of the proteasome but also by interfering with protein ubiquitination. Viral protein expression was reduced in cells expressing a temperature-sensitive ubiquitin-activating enzyme E1 at the restrictive temperature, as well as in cells in which ubiquitin was depleted by using small interfering RNAs. Under these conditions, the susceptibility of the cells to virus infection was, however, not affected, excluding an important role of ubiquitination in virus entry. Our observations reveal an important role of the UPS in multiple steps of the CoV infection cycle and identify the UPS as a potential drug target to modulate the impact of CoV infection

    Adverse effects of feline IL-12 during DNA vaccination against feline infectious peritonitis virus

    No full text
    Cell-mediated immunity is thought to play a decisive role in protecting cats against feline infectious peritonitis (FIP), a progressive and lethal coronavirus disease. In view of the potential of DNA vaccines to induce cell-mediated responses, their efficacy to induce protective immunity in cats was evaluated. The membrane (M) and nucleocapsid (N) proteins were chosen as antigens, because antibodies to the spike (S) protein of FIP virus (FIPV) are known to precipitate pathogenesis. However, vaccination by repeated injections of plasmids encoding these proteins did not protect kittens against challenge infection with FIPV. Also, a primeboost protocol failed to afford protection, with priming using plasmid DNA and boosting using recombinant vaccinia viruses expressing the same coronavirus proteins. Because of the role of IL-12 in initiating cell-mediated immunity, the effects of co-delivery of plasmids encoding the feline cytokine were studied. Again, IL-12 did not meet expectations on the contrary, it enhanced susceptibility to FIPV challenge. This study shows that DNA vaccination failed to protect cats against FIP and that IL-12 may yield adverse effects when used as a cytokine adjuvant
    corecore