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To enhance the efficacy of a DNA vaccine against pseudorabies virus (PRV), we evaluated the adjuvant
properties of plasmids coding for gamma interferon or interleukin-12, of CpG immunostimulatory motifs, and
of the conventional adjuvants dimethyldioctadecylammonium bromide in water (DDA) and sulfolipo-cyclodex-
trin in squalene in water. We demonstrate that a DNA vaccine combined with DDA, but not with the other
adjuvants, induced significantly stronger immune responses than plasmid vaccination alone. Moreover, pigs
vaccinated in the presence of DDA were protected against clinical disease and shed significantly less PRV after
challenge infection. This is the first study to demonstrate that DDA, a conventional adjuvant, enhances DNA
vaccine-induced antiviral immunity.

DNA vaccines show great promise as an alternative to con-
ventional vaccines in numerous preclinical animal models. In-
vestigative approaches designed to enhance the efficacy of
DNA vaccines are of major importance, as immunity induced
by DNA vaccines is often unable to provide sufficient protec-
tion against challenge infection. It has previously been dem-
onstrated that vaccination with pseudorabies virus (PRV) gly-
coprotein D (gD) DNA induced high titers of virus-
neutralizing (VN) antibodies, while vaccination with gB DNA
induced PRV-specific cell-mediated immune (CMI) responses,
including those of CD8� cytotoxic T lymphocytes (CTLs) and
memory T-helper cells (12, 47), and that the intradermal route
of inoculation was superior to the intramuscular route of in-
oculation (48). However, protection against challenge infec-
tion was partial in terms of reduction of virus shedding and
clinical disease early after infection (12, 47). As the ability to
reduce virus shedding early after infection has been linked to
the presence of cell-mediated immunity (3, 25, 47), we have
attempted to enhance antiviral T-cell responses by the inclu-
sion of different adjuvants.

In this study, we tested plasmids encoding gamma interferon
(IFN-�) and interleukin-12 (IL-12), as these cytokines may act
as adjuvants through stimulation of T-helper-1 or antigen-
specific CD8� CTL responses (4, 6, 22, 35, 46). Furthermore,
we tested the immunostimulatory properties of unmethylated
CpG motifs, as present in the ampicillin resistance gene (37,
38, 40) of plasmid pUC18 (New England Biolabs). In addition,
we tested lipophilic amine dimethyldioctadecylammonium bro-
mide in water (DDA) and sulfolipo-cyclodextrin in squalene in

water (SL-CD), two conventional adjuvants already shown to
enhance the efficacy of conventional vaccines (5, 17, 19, 20, 21,
31, 32, 39).

To produce vectors encoding biologically active porcine
IL-12 (pIL12), cDNA encoding the pIL12 p40 chain was ex-
cised by ApaI/SphI digestion of pGEM3Z-IL12p40 (26) and
ligated into EcoRV-digested VR1012 (VR-p40). Plasmid
VR1012 contains the human cytomegalovirus immediate-early
promoter, intron A, the processing signal for bovine growth
hormone polyadenylation, and the gene encoding kanamycin
resistance (15). The entire expression cassette from VR-p40
was isolated by ApaLI digestion and ligated into DraI-digested
VR1012, yielding VR-p40*. To obtain a vector that encodes
both the p35 and the p40 chains, the cDNA encoding the p35
chain of pIL12 was excised by XhoI/SmaI digestion of pBlue-
scriptIISK(-)IL12p35 and cloned into EcoRV-digested VR-
p40* (VR-pIL12).

cDNA encoding porcine IFN-� (pIFN-�) was isolated by
BamHI/EcoRI digestion of pBS�Po IFN-� 6-A1 and cloned
into EcoRV-digested VR1012, yielding VR-pIFN-�. Plasmids
grown in the DH5� strain of Escherichia coli, purified on Qia-
gen columns (Qiagen), were transfected using Lipofectamine
Plus (Gibco BRL) according the manufacturer’s instructions.
Culture supernatants of COS-7 cells collected 72 h posttrans-
fection with VR-pIL12 were analyzed for pIL12 activity, using
a previously described bioassay (7). Briefly, human peripheral
blood mononuclear cells (PBMC) were incubated for 48 h in
the presence of COS-7 supernatants, after which [3H]thymi-
dine incorporation was determined. As a positive control, re-
combinant human IL-12 (Roche) was used. As shown in Fig. 1,
VR-pIL12 encoded biologically active pIL12, as culture super-
natants from VR-pIL12-transfected COS-7 cells clearly stim-
ulated PBMC proliferation, whereas supernatants from
VR1012- or VR-p40*-transfected COS-7 cells did not.
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Culture supernatants of COS-7 cells collected 72 h post-
transfection with VR-pIFN-� were analyzed for pIFN-� activ-
ity using a pIFN-� enzyme-linked immunosorbent assay (Bio-
source International) and in a foot-and-mouth disease virus
(FMDV) plaque reduction bioassay. In the FMDV bioassay,
secondary swine kidney (SK-2) cells, seeded in 6-well plates
(Cellstar; Greiner, Frickenhausen, Germany), were incubated
for 15 min with twofold dilutions of the samples, after which
FMDV strain C1 Detmold was added. After 1 h, medium
containing 1% (vol/vol) methylcellulose was added, and after
48 h, wells were rinsed with 1% citric acid and stained with
Amidoblack.

VR-pIFN-� encoded pIFN-�, as we could detect amounts of
1 to 2 �g of pIFN-�/ml in supernatants of VR-pIFN-�-trans-
fected COS-7 cells in the enzyme-linked immunosorbent assay,
whereas we could not detect any pIFN-� in supernatants of
VR1012-transfected COS-7 cells. In addition, the encoded
pIFN-� was biologically active, as it reduced FMDV replica-
tion (Fig. 2).

To evaluate the immunogenicity of different DNA vaccine-
adjuvant combinations, 10- to 12-week-old Dutch landrace pigs
from the specified-pathogen-free herd of ID-Lelystad were
vaccinated. Pigs born from unvaccinated sows and free from
antibodies against PRV prior the start of the experiment were
vaccinated three times at intervals of 4 weeks. At each vacci-
nation, 2 ml of the vaccine preparation was injected intrader-
mally using a 22-gauge needle. Groups of four pigs received
combinations of VR-gB and VR-gD (400 �g each) in the
absence or presence of either VR-pIFN-�, VR-pIL12, or
pUC18 plasmid (400 �g each) or in the presence of SL-CD (16
mg of sulfolipo-cyclodextrin, 40 mg of Tween 80, and 160 mg of
squalane per ml [17]) or DDA (16 mg per ml; Aldrich). Con-
trol pigs were vaccinated with 800 �g of plasmid VR1012. All
experimental procedures and animal management procedures
were undertaken in accordance with the requirements of the
animal care and ethics committees of the institute. At weekly
intervals, starting 1 week prior to the first vaccination, blood
samples were collected to assess the presence of VN antibodies

and CMI responses. VN antibodies were detected using a
method previously described (2). Briefly, heat-inactivated se-
rum was incubated with 100 50% tissue culture infective doses
(TCID50) of PRV strain NIA-3 for 24 h at 37°C, after which
SK-6 cells were added. Titers are expressed as log10 values of
the reciprocal of the highest serum dilution inhibiting cyto-
pathogenic effect in 50% of the cell cultures. As shown in Fig.
3, all pigs developed VN antibodies after the second vaccina-
tion with VR-gB and VR-gD. Codelivery of pIFN-� DNA,
pIL12 DNA, SL-CD, or pUC18 did not enhance VN antibody
responses. In contrast, codelivery of DDA significantly en-
hanced the induction of VN antibodies (P � 0.05) after the
second and third vaccinations. Analysis of immunoglobulin 1
and immunoglobulin 2 isotype-specific antibody responses (24)
confirmed the observation that only codelivery of DDA signif-
icantly enhanced the PRV specific antibody response (E. M. A.
van Rooij, unpublished observations).

Lymphocyte proliferative (LPT) responses were determined
as previously described (48) and expressed as stimulation index
(SI) values (calculated as the number of counts [mean of qua-
druplicate wells] of PRV-stimulated PBMC divided by the
number of counts [mean of quadruplicate wells] of mock-stim-
ulated PBMC). As shown in Fig. 4, pigs vaccinated in the
presence of DDA developed already clear LPT responses after
the first vaccination, whereas the other DNA-vaccinated
groups developed PRV-specific LPT responses only after the
third vaccination. Furthermore, codelivery of DDA resulted in
significantly (P � 0.05) higher LPT responses than those for
pigs vaccinated with VR-gD and VR-gB alone, whereas code-
livery of the other adjuvants did not significantly enhance
PRV-specific LPT responses.

Six weeks after the third vaccination, pigs were challenged
intranasally with 105 PFU of virulent wild-type strain NIA-3
per animal to assess the level of protection obtained by vacci-
nation (34). To determine viral replication, swab specimens of
oropharyngeal fluid were titrated on SK-6 monolayers as pre-
viously described (23). All groups of pigs vaccinated with
VR-gB and VR-gD excreted PRV for a significantly (P � 0.05)

FIG. 1. Expression of biologically active pIL12 by transfected
COS-7 cells. Culture medium samples of COS-7 cells transfected with
the plasmid VR1012 (1), VR-p40 (2), or VR-pIL12 (3) were collected
72 h posttransfection, and the ability to stimulate the proliferation of
human PBMCs was evaluated. Culture medium (4) and medium con-
taining 12 ng of recombinant human IL-12/ml (5) were used as con-
trols. Data are expressed as the geometric means � the standard errors
of the means. Results shown are representative of two similar exper-
iments.

FIG. 2. Expression of biologically active pIFN-� by transfected
COS-7 cells. Culture medium samples of COS-7 cells transfected with
VR1012 (white bars) or VR1012-p IFN-� (black bars) were collected
72 h posttransfection, diluted 20, 200, 2,000, or 20,000 times, and
assayed for antiviral activity, using an FMDV plaque reduction bioas-
say. Data are expressed as the geometric means � the standard errors
of the means. Results shown are representative of two similar exper-
iments.
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shorter period than sham-vaccinated control pigs (Fig. 5A).
Compared to vaccination with VR-gB and VR-gD alone, code-
livery of DDA significantly (P � 0.05) reduced levels of virus
excretion during the period of peak excretion (days 2 to 5)
after challenge (Fig. 5A). In addition to the effect seen with
codelivery of DDA, codelivery of SL-CD also significantly re-
duced peak levels of virus excretion, although significantly less
than DDA did.

The challenge infection with virulent PRV resulted in severe
clinical signs in sham-vaccinated control pigs (nasal discharge,

coughing, ataxia, and convulsions; one pig died). In all groups,
vaccination with VR-gB and VR-gD significantly (P � 0.05)
shortened the duration of these clinical signs (Fig. 6A). Ac-
cording to the clinical signs, pigs vaccinated in the presence of
DDA, pIFN-� DNA, or pIL-12 DNA suffered for a signifi-
cantly shorter period (P � 0.05) than pigs vaccinated with
VR-gB and VR-gD alone. Only pigs vaccinated in the presence
of DDA remained free of clinical signs (Fig. 6A), and theirs
was the only group that exhibited significantly (P � 0.05) better
growth performance compared to those of the others, as as-
sessed by calculating the mean relative daily gain (MRDG) in
body weight during the first week after challenge (45) com-
pared to that of the sham-vaccinated control pigs (Fig. 6B).

This study demonstrates that DDA greatly improved PRV-
specific humoral immune responses and CMI responses after
DNA vaccination. The adjuvanticity of DDA may be the result
of the induction of an influx of antigen-presenting cells (11,
18), the production of cytokines such as interferons and inter-
leukin-1 (28), or the enhancement of plasmid DNA transfec-

FIG. 3. Analysis of PRV-neutralizing antibodies in sera of immu-
nized pigs. Pigs were vaccinated at weeks 0, 4, and 8 with VR1012 (�),
VR-gB � VR-gD (Œ), VR-gB � VR-gD with pUC 18 (‚), VR-IFN-�
(■ ), VR-pIL12 (E), SL-CD (�), or DDA (F). Samples from the
individual pigs were tested. Data are expressed as geometric mean
titers of the different groups. Differences in group averages were tested
for statistical significance by a parametric one-way analysis of variance
(ANOVA) (95% significance level) for the entire observation period
after each vaccination and not for the individual time points. For
reasons of clarity, error bars are not shown.

FIG. 4. Induction of PRV-specific T-cell responses in vaccinated
pigs. Pigs were vaccinated at weeks 0, 4, and 8 with VR1012 (�),
VR-gB � VR-gD (Œ), VR-gB � VR-gD with pUC 18 (‚), VR-p
IFN-� (■ ), VR-pIL12 (E), SL-CD (�), or DDA (F). PBMCs were
stimulated for 4 days with medium or live PRV, after which [3H]thy-
midine incorporation levels were determined. Data are expressed as SI
values. Based on the SI values of the control group (mean � 3�
standard deviation), an SI of �2.5 was considered positive. Through-
out the experiments, counts of mock-stimulated PBMCs ranged from
300 to 1,500 and standard errors of the means of quadruplicates were
less than 20%. Samples from the individual pigs were tested. Data are
expressed as geometric mean SI values of the different groups. Differ-
ences in group averages were tested for statistical significance by a
parametric one-way ANOVA (95% significance level) for the entire
observation period after each vaccination and not for the individual
time points. For reasons of clarity, error bars are not shown.

FIG. 5. Virus excretion after challenge infection with PRV strain
NIA-3. (A) Pigs vaccinated with VR1012 (�), VR-gB � VR-gD (Œ),
VR-gB � VR-gD with pUC 18 (‚), VR-p IFN-� (■ ), VR-pIL12 (E),
SL-CD (�), or DDA (F) were challenge infected 6 weeks after the
third vaccination. Samples from the individual pigs were tested. Data
are expressed as geometric mean virus titers (log10) per gram of oro-
pharyngeal fluid for the different groups. Differences in group averages
were tested for statistical significance by a parametric one-way
ANOVA (95% significance level). For reasons of clarity, error bars are
not shown. (B) Pigs vaccinated with VR1012 (�) or VR-IE with DDA
(�) were challenge infected 6 weeks after the third vaccination. Sam-
ples from the individual pigs were tested. Data are expressed as geo-
metric mean virus titers (log10) per gram of oropharyngeal fluid for the
different groups. There were no significant differences in results be-
tween VR-IE- and sham (VR1012)-vaccinated pigs.
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tion efficacy (14). Codelivery of DDA also clearly improved
protection against PRV challenge, but although clinical signs
were absent, protection was not complete, as pigs still excreted
virus and suffered some growth retardation (MRDG � 1; this
value was significantly different from that for sham-vaccinated
pigs but not from those for other groups of DNA-vaccinated
pigs [compare the minimal requirement for PRV vaccines, as
specified by the European Pharmacopoeia, of �1.5). It has
been suggested that adjuvants like DDA or CpG motifs them-
selves provide protection against infections (e.g., those caused
by Listeria monocytogenes) through activation of macrophages
(11, 36). However, taking into consideration our experimental
design (intradermal vaccination and intranasal challenge infec-
tion, with a time period of 6 weeks between vaccination and
challenge infection) and the observed enhanced PRV-specific
immune responses, we speculate that DDA exerts its protec-
tive effect mainly through enhancement of the PRV-specific
immune responses. This speculation is supported by the fact
that in a similar experiment, we demonstrated that a vaccine
consisting of DNA encoding the PRV immediate-early gene
(VR-IE) in combination with DDA did not provide protection

against challenge infection. Pigs vaccinated with VR-IE plus
DDA did not develop PRV-specific VN antibodies nor PRV-
specific LPT responses and were not protected against chal-
lenge infection, as exemplified by the lack of significant reduc-
tion in virus-shedding levels compared to those for sham-
vaccinated control pigs (Fig. 5B), indicating that DDA (in
combination with a nonprotective DNA vaccine) does not pro-
vide protection. Furthermore, adjuvants like DDA or CpG
motifs themselves have also been shown not to protect against
other viral infections, like Semliki forest virus and lymphocytic
choriomeningitis virus infections (27, 36).

Remarkably, the other agents tested in this study did not
exert significant adjuvanticity. Plasmid pUC18 may have lacked
adjuvanticity because of species-specific recognition of CpG
motifs (1, 16, 33). Although codelivery of plasmids encoding
IL-12 has been shown to augment antigen-specific CD4� T-
helper-1 (4, 42, 43, 46, 50) and CD8� CTL (4, 13, 22, 35, 46)
responses, other studies did not reveal immune stimulating
effects or even observed adverse effects (9, 10, 29). Similarly,
notwithstanding the fact that codelivery of plasmids encoding
IFN-� has shown to enhance immunity (4, 6, 41), others (44)
were unable to demonstrate significant effects of codelivery of
IFN-� DNA. Although we could not demonstrate a significant
effect of the codelivery of pIFN-� DNA or pIL12 DNA on
antigen-specific immune responses, we observed that codeliv-
ery of pIFN-� DNA or pIL12 DNA reduced the occurrence of
clinical signs (without having any detectable effect on levels of
virus shedding). Despite the fact that the underlying mecha-
nism is not clear, similar observations have been made for
IFN-�. Codelivery of recombinant pIFN-� during vaccination
of pigs with inactivated PRV did not affect nasal virus excretion
but diminished disease parameters such as fever and loss of
body weight (49), and IFN-� protected mice against fatal her-
pes simplex virus-induced encephalitis without reducing virus
replication (8, 30).

In summary, codelivery of DDA during DNA vaccination
against PRV enhanced the induction of antigen-specific hu-
moral and cell-mediated immunity and improved protection
against the challenge infection in terms of virus shedding and
clinical signs. These results indicate that the efficacy of DNA
vaccines can be improved by the conventional adjuvant DDA.

We thank F. Lefèvre for plasmid pBS�PoIFN-�6-A1 and T.
Kokuho for providing plasmids pBluescriptIISK(-)IL-12p35 and
pGEM3Z-IL-12p40.
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