164 research outputs found

    Reconstructing the projected gravitational potential of Abell 1689 from X-ray measurements

    Full text link
    Context. Galaxy clusters can be used as cosmological probes, but to this end, they need to be thoroughly understood. Combining all cluster observables in a consistent way will help us to understand their global properties and their internal structure. Aims. We provide proof of the concept that the projected gravitational potential of galaxy clusters can directly be reconstructed from X-ray observations. We also show that this joint analysis can be used to locally test the validity of the equilibrium assumptions in galaxy clusters. Methods. We used a newly developed reconstruction method, based on Richardson-Lucy deprojection, that allows reconstructing projected gravitational potentials of galaxy clusters directly from X-ray observations. We applied this algorithm to the well-studied cluster Abell 1689 and compared the gravitational potential reconstructed from X-ray observables to the potential obtained from gravitational lensing measurements. [...] Results. Assuming spherical symmetry and hydrostatic equilibrium, the potentials recovered from gravitational lensing and from X-ray emission agree very well beyond 500 kpc. Owing to the fact that the Richardson-Lucy deprojection algorithm allows deprojecting each line of sight independently, this result may indicate that non-gravitational effects and/or asphericity are strong in the central regions of the clusters. Conclusions. We demonstrate the robustness of the potential reconstruction method based on the Richardson-Lucy deprojection algorithm and show that gravitational lensing and X-ray emission lead to consistent gravitational potentials. Our results illustrate the power of combining galaxy-cluster observables in a single, non-parametric, joint reconstruction of consistent cluster potentials that can be used to locally constrain the physical state of the gas.Comment: 8 pages, 4 figures. Accepted in A&

    Little evidence for entropy and energy excess beyond r500r_{500} - An end to ICM preheating?

    Get PDF
    Non-gravitational feedback affects the nature of the intra-cluster medium (ICM). X-ray cooling of the ICM and in situ energy feedback from AGN's and SNe as well as {\it preheating} of the gas at epochs preceding the formation of clusters are proposed mechanisms for such feedback. While cooling and AGN feedbacks are dominant in cluster cores, the signatures of a preheated ICM are expected to be present even at large radii. To estimate the degree of preheating, with minimum confusion from AGN feedback/cooling, we study the excess entropy and non-gravitational energy profiles upto r200r_{200} for a sample of 17 galaxy clusters using joint data sets of {\it Planck} SZ pressure and {\it ROSAT/PSPC} gas density profiles. The canonical value of preheating entropy floor of ≳300\gtrsim 300 keV cm2^2, needed in order to match cluster scalings, is ruled out at ≈3σ\approx 3\sigma. We also show that the feedback energy of 1 keV/particle is ruled out at 5.2σ\sigma beyond r500r_{500}. Our analysis takes both non-thermal pressure and clumping into account which can be important in outer regions. Our results based on the direct probe of the ICM in the outermost regions do not support any significant preheating.Comment: 6 pages, 4 figures, 1 table, Accepted in MNRAS Letter

    Excess entropy and energy feedback from within cluster cores up to r200_{200}

    Get PDF
    We estimate the "non-gravitational" entropy-injection profiles, ΔK\Delta K, and the resultant energy feedback profiles, ΔE\Delta E, of the intracluster medium for 17 clusters using their Planck SZ and ROSAT X-Ray observations, spanning a large radial range from 0.2r5000.2r_{500} up to r200r_{200}. The feedback profiles are estimated by comparing the observed entropy, at fixed gas mass shells, with theoretical entropy profiles predicted from non-radiative hydrodynamic simulations. We include non-thermal pressure and gas clumping in our analysis. The inclusion of non-thermal pressure and clumping results in changing the estimates for r500r_{500} and r200r_{200} by 10\%-20\%. When clumpiness is not considered it leads to an under-estimation of ΔK≈300\Delta K\approx300 keV cm2^2 at r500r_{500} and ΔK≈1100\Delta K\approx1100 keV cm2^2 at r200r_{200}. On the other hand, neglecting non-thermal pressure results in an over-estimation of ΔK≈100\Delta K\approx 100 keV cm2^2 at r500r_{500} and under-estimation of ΔK≈450\Delta K\approx450 keV cm2^2 at r200r_{200}. For the estimated feedback energy, we find that ignoring clumping leads to an under-estimation of energy per particle ΔE≈1\Delta E\approx1 keV at r500r_{500} and ΔE≈1.5\Delta E\approx1.5 keV at r200r_{200}. Similarly, neglect of the non-thermal pressure results in an over-estimation of ΔE≈0.5\Delta E\approx0.5 keV at r500r_{500} and under-estimation of ΔE≈0.25\Delta E\approx0.25 keV at r200r_{200}. We find entropy floor of ΔK≈300\Delta K\approx300 keV cm2^2 is ruled out at ≈3σ\approx3\sigma throughout the entire radial range and ΔE≈1\Delta E\approx1 keV at more than 3σ\sigma beyond r500r_{500}, strongly constraining ICM pre-heating scenarios. We also demonstrate robustness of results w.r.t sample selection, X-Ray analysis procedures, entropy modeling etc.Comment: 17 pages, 15 figures, 5 tables, Accepted in MNRA

    ALMA-SZ Detection of a Galaxy Cluster Merger Shock at Half the Age of the Universe

    Get PDF
    We present ALMA measurements of a merger shock using the thermal Sunyaev-Zel'dovich (SZ) effect signal, at the location of a radio relic in the famous El Gordo galaxy cluster at z≈0.9z \approx 0.9. Multi-wavelength analysis in combination with the archival Chandra data and a high-resolution radio image provides a consistent picture of the thermal and non-thermal signal variation across the shock front and helps to put robust constraints on the shock Mach number as well as the relic magnetic field. We employ a Bayesian analysis technique for modeling the SZ and X-ray data self-consistently, illustrating respective parameter degeneracies. Combined results indicate a shock with Mach number M=2.4−0.6+1.3{\cal M} = 2.4^{+1.3}_{-0.6}, which in turn suggests a high value of the magnetic field (of the order of 4−10 μ4-10 ~\muG) to account for the observed relic width at 2 GHz. At roughly half the current age of the universe, this is the highest-redshift direct detection of a cluster shock to date, and one of the first instances of an ALMA-SZ observation in a galaxy cluster. It shows the tremendous potential for future ALMA-SZ observations to detect merger shocks and other cluster substructures out to the highest redshifts.Comment: Matched to the ApJL published version (2016 September 22), minor grammar and typo fixe

    The Physics of Galaxy Cluster Outskirts

    Get PDF
    As the largest virialized structures in the universe, galaxy clusters continue to grow and accrete matter from the cosmic web. Due to the low gas density in the outskirts of clusters, measurements are very challenging, requiring extremely sensitive telescopes across the entire electromagnetic spectrum. Observations using X-rays, the Sunyaev-Zeldovich effect, and weak lensing and galaxy distributions from the optical band, have over the last decade helped to unravel this exciting new frontier of cluster astrophysics, where the infall and virialization of matter takes place. Here, we review the current state of the art in our observational and theoretical understanding of cluster outskirts, and discuss future prospects for exploration using newly planned and proposed observatories.Comment: 56 pages. Review paper. Published in Space Science Review

    Extending Tables with Data from over a Million Websites

    Get PDF
    Abstract. This Big Data Track submission demonstrates how the BTC 2014 dataset, Microdata annotations from thousands of websites, as well as millions of HTML tables are used to extend local tables with additional columns. Ta-ble extension is a useful operation within a wide range of application scenarios: Imagine you are an analyst having a local table describing companies and you want to extend this table with the headquarter of each company. Or imagine you are a film enthusiast and want to extend a table describing films with attributes like director, genre, and release date of each film. The Mannheim Search Joins Engine automatically performs such table extension operations based on a large data corpus gathered from over a million websites that publish structured data in various formats. Given a local table, the Mannheim Search Joins Engine searches the corpus for additional data describing the entities of the input table. The dis-covered data are then joined with the local table and their content is consolidated using schema matching and data fusion methods. As result, the user is presented with an extended table and given the opportunity to examine the provenance o

    Investigating the turbulent hot gas in X-COP galaxy clusters

    Full text link
    Turbulent processes at work in the intracluster medium perturb this environment, displacing gas, and creating local density fluctuations that can be quantified via X-ray surface brightness fluctuation analyses. Improved knowledge of these phenomena would allow for a better determination of the mass of galaxy clusters, as well as a better understanding of their dynamic assembly. In this work, we aim to set constraints on the structure of turbulence using X-ray surface brightness fluctuations. We seek to consider the stochastic nature of this observable and to constrain the structure of the underlying power spectrum. We propose a new Bayesian approach, relying on simulation-based inference to account for the whole error budget. We used the X-COP cluster sample to individually constrain the power spectrum in four regions and within R500R_{500}. We spread the analysis on the 12 systems to alleviate the sample variance. We then interpreted the density fluctuations as the result of either gas clumping or turbulence. For each cluster considered individually, the normalisation of density fluctuations correlates positively with the Zernike moment and centroid shift, but negatively with the concentration and the Gini coefficient. The spectral index within R500R_{500} and evaluated over all clusters is consistent with a Kolmogorov cascade. The normalisation of density fluctuations, when interpreted in terms of clumping, is consistent within 0.5R5000.5 R_{500} with the literature results and numerical simulations; however, it is higher between 0.5 and 1R5001 R_{500}. Conversely, when interpreted on the basis of turbulence, we deduce a non-thermal pressure profile that is lower than the predictions of the simulations within 0.5 R500R_{500}, but still in agreement in the outer regions. We explain these results by the presence of central structural residues that are remnants of the dynamic assembly of the clusters.Comment: Accepted for publication in A&A. Abstract slightly abridged for arXi

    Allele-specific endogenous tagging and quantitative analysis of β-catenin in colorectal cancer cells

    Get PDF
    Wnt signaling plays important roles in development, homeostasis, and tumorigenesis. Mutations in β-catenin that activate Wnt signaling have been found in colorectal and hepatocellular carcinomas. However, the dynamics of wild-type and mutant forms of β-catenin are not fully understood. Here, we genome-engineered fluorescently tagged alleles of endogenous β-catenin in a colorectal cancer cell line. Wild-type and oncogenic mutant alleles were tagged with different fluorescent proteins, enabling the analysis of both variants in the same cell. We analyzed the properties of both β-catenin alleles using immunoprecipitation, immunofluorescence, and fluorescence correlation spectroscopy approaches, revealing distinctly different biophysical properties. In addition, activation of Wnt signaling by treatment with a GSK3β inhibitor or a truncating APC mutation modulated the wild-type allele to mimic the properties of the mutant β-catenin allele. The one-step tagging strategy demonstrates how genome engineering can be employed for the parallel functional analysis of different genetic variants
    • …
    corecore