research

Excess entropy and energy feedback from within cluster cores up to r200_{200}

Abstract

We estimate the "non-gravitational" entropy-injection profiles, ΔK\Delta K, and the resultant energy feedback profiles, ΔE\Delta E, of the intracluster medium for 17 clusters using their Planck SZ and ROSAT X-Ray observations, spanning a large radial range from 0.2r5000.2r_{500} up to r200r_{200}. The feedback profiles are estimated by comparing the observed entropy, at fixed gas mass shells, with theoretical entropy profiles predicted from non-radiative hydrodynamic simulations. We include non-thermal pressure and gas clumping in our analysis. The inclusion of non-thermal pressure and clumping results in changing the estimates for r500r_{500} and r200r_{200} by 10\%-20\%. When clumpiness is not considered it leads to an under-estimation of ΔK300\Delta K\approx300 keV cm2^2 at r500r_{500} and ΔK1100\Delta K\approx1100 keV cm2^2 at r200r_{200}. On the other hand, neglecting non-thermal pressure results in an over-estimation of ΔK100\Delta K\approx 100 keV cm2^2 at r500r_{500} and under-estimation of ΔK450\Delta K\approx450 keV cm2^2 at r200r_{200}. For the estimated feedback energy, we find that ignoring clumping leads to an under-estimation of energy per particle ΔE1\Delta E\approx1 keV at r500r_{500} and ΔE1.5\Delta E\approx1.5 keV at r200r_{200}. Similarly, neglect of the non-thermal pressure results in an over-estimation of ΔE0.5\Delta E\approx0.5 keV at r500r_{500} and under-estimation of ΔE0.25\Delta E\approx0.25 keV at r200r_{200}. We find entropy floor of ΔK300\Delta K\approx300 keV cm2^2 is ruled out at 3σ\approx3\sigma throughout the entire radial range and ΔE1\Delta E\approx1 keV at more than 3σ\sigma beyond r500r_{500}, strongly constraining ICM pre-heating scenarios. We also demonstrate robustness of results w.r.t sample selection, X-Ray analysis procedures, entropy modeling etc.Comment: 17 pages, 15 figures, 5 tables, Accepted in MNRA

    Similar works