7 research outputs found

    Deaktivierungsdynamik von mikrobiellem und visuellem Rhodopsin

    No full text
    In der vorliegenden Arbeit wurde die Dynamik zweier grundlegend verschiedener, deaktivierender Mechanismen von Retinalproteinen untersucht. In einem dritten Projekt wurde die Photodynamik einer Dreifachmutante von visuellem Rhodopsin erforscht, von der eine Mutation zu kongenitaler (angeborener) Nachtblindheit fĂŒhrt und zwei andere Mutationen das Protein ĂŒber eine DisulfidbrĂŒcke stabilisieren. Die Ergebnisse dieser drei Projekte sind im Folgenden zusammengefasst. Die AktivitĂ€t des mikrobiellen Proteorhodopsins als lichtgetriebene Protonenpumpe kann photoinduziert unterbunden werden. Dies erfolgt durch die Absorption von blauem Licht durch das Retinal bei deprotonierter Schiff‘schen Base. Vor dieser Arbeit war allerdings nur wenig ĂŒber den Mechanismus und die Kinetik dieses Effekts bekannt. Das einzige Retinalprotein, an dem diese Deaktivierungsdynamik auf molekularer Ebene zeitaufgelöst untersucht wurde, ist Bakteriorhodopsin. Doch auch an diesem System wurde die ultraschnelle PrimĂ€rreaktion in der photoinduzierten Deaktivierungsdynamik - die Photoisomerisierung des 13-cis-Retinals - bisher nicht zeitaufgelöst gemessen. In dieser Arbeit wurde ein Weg gefunden, diesen Prozess auf einer Sub-Pikosekundenzeitskala zu detektieren. Dazu wurde eine Proteorhodopsinmutante genutzt, in der der primĂ€re Protonendonor E108 durch Glutamin ersetzt ist. Diese Mutante weist eine signifikante Erhöhung der Lebensdauer des M-Intermediats auf. Im photostationĂ€ren Gleichgewicht fĂŒhrt diese verĂ€nderte Kinetik zu einer erheblich erhöhten Akkumulation des Proteins im M-Zustand, die ausreicht, um photoinduzierte AbsorptionsĂ€nderungen der Deaktivierungsdynamik sowohl im sichtbaren als auch im mittleren Infrarotbereich auf ultrakurzer Zeitskala zu detektieren. Dieses Projekt erfolgte in Kooperation mit dem Arbeitskreis Glaubitz (Goethe-UniversitĂ€t Frankfurt am Main). Es zeigte sich, dass die Anregung des Retinals von Proteorhodopsin im M-Zustand zur Isomerisierung von 13-cis zu all-trans fĂŒhrt, die nach wenigen Pikosekunden abgeschlossen ist. Der zweite und abschließende Schritt ist die Reprotonierung der Schiff'schen Base. Es stellte sich heraus, dass dieser Prozess auf einer Nanosekundenzeitskala ablĂ€uft und ĂŒber einen Protonentransfer vom primĂ€ren Protonenakzeptor D97 zur Schiff'schen Base ermöglicht ist. Die in dieser Arbeit vorgestellte Methodik zur Untersuchung der deaktivierenden Photodynamik von Proteorhodopsin auf ultraschneller Zeitskala, könnte in Zukunft auf weitere mikrobielle Rhodopsine angewandt werden. So ist die Studie der Deaktivierungsdynamik von Channelrhodopsinen von großem Interesse fĂŒr optogenetische Anwendungen. Eine lichtgesteuerte Kontrolle der Ionenkanalöffnung und -schließung sollte die PrĂ€zision in der Regulierung ionischer Permeation erheblich verbessern. Die Proteorhodopsinmutante E108Q wurde außerdem in ihrer primĂ€ren Photodynamik sowohl bei grĂŒnem als auch blauem Anregungslicht untersucht. Es zeigte sich in beiden FĂ€llen eine Dynamik, die der des Wildtyps sehr Ă€hnlich ist. Eine Beobachtung unterscheidet sich jedoch wesentlich vom Wildtyp. Das K-Intermediat der E108Q-Mutante scheint nach einigen hundert Pikosekunden zumindest partiell zu zerfallen, woraufhin sich eine Signatur im blauen Spektralbereich bildet. Blitzlichtphotolysemessungen lassen vermuten, dass diese blau absorbierende Species im zwei- bis dreistelligen Nanosekundenbereich wieder zerfallen sein muss. Der zweite Teil dieser Arbeit beschĂ€ftigt sich mit dem Photozerfall von visuellem Rhodopsin. Es ist bekannt, dass die Signaltransduktion durch Wechselwirkung zwischen aktiviertem Rhodopsin und Arrestin unterbunden wird. Im ersten Abschnitt wurde der Einfluss der Arrestin-1-Variante p44 auf die Photodynamik visuellen, bovinen Rhodopsins untersucht. In einer Kooperation mit dem Arbeitskreis Schwalbe (Goethe-UniversitĂ€t Frankfurt am Main) konnte gezeigt werden, dass Arrestin erheblichen Einfluss auf die Zerfallsdynamik von Meta II und Meta III hat. Es wurde festgestellt, dass die Wechselwirkung von p44 mit photoaktiviertem Rhodopsin eine erhöhte Population des Intermediats Meta III bewirkt, mit der Folge einer zweifach langsameren Freisetzungskinetik des all-trans-Retinals. Diese Beobachtung weist auf eine physiologische Rolle des Zustands Meta III in der Retinalhomöostase hin. Gegenstand einer zweiten Studie mit dem Arbeitskreis Schwalbe ist zum einen die Rhodopsinmutation G90D, die mit kongenitaler (angeborener) stationĂ€rer Nachtblindheit zusammenhĂ€ngt, und zum anderen die Doppelmutation N2C und D282C, die zur Ausbildung einer stabilisierenden DisulfidbrĂŒcke zwischen den im extrazellulĂ€ren Bereich eingefĂŒhrten Cysteinen fĂŒhrt. Im Rahmen dieser Arbeit wurde die Photodynamik des Wildtyps, der Doppelmutante und der stabilisierten G90D-Mutante (Mutationen G90D, N2C und D282C) sowohl auf einer ultrakurzen Zeitskala als auch auf einer Minutenskala untersucht

    Light dynamics of the retinal-disease-relevant G90D bovine rhodopsin mutant

    No full text
    The RHO gene encodes the G-protein-coupled receptor (GPCR) rhodopsin. Numerous mutations associated with impaired visual cycle have been reported; the G90D mutation leads to a constitutively active mutant form of rhodopsin that causes CSNB disease. We report on the structural investigation of the retinal configuration and conformation in the binding pocket in the dark and light-activated state by solution and MAS-NMR spectroscopy. We found two long-lived dark states for the G90D mutant with the 11-cis retinal bound as Schiff base in both populations. The second minor population in the dark state is attributed to a slight shift in conformation of the covalently bound 11-cis retinal caused by the mutation-induced distortion on the salt bridge formation in the binding pocket. Time-resolved UV/Vis spectroscopy was used to monitor the functional dynamics of the G90D mutant rhodopsin for all relevant time scales of the photocycle. The G90D mutant retains its conformational heterogeneity during the photocycle

    Chromophore distortions in photointermediates of proteorhodopsin visualized by Dynamic Nuclear Polarization-enhanced solid-state NMR

    No full text
    Proteorhodopsin (PR) is the most abundant retinal protein on earth and functions as a light-driven proton pump. Despite of extensive efforts, structural data for PR photointermediate states have not been obtained. Based on DNP-enhanced solid-state NMR, we were able to analyze the retinal polyene chain between positions C10 and C15 as well as the Schiff base nitrogen in the ground state in comparison to light induced, cryotrapped K- and M-states. A high M-state population could be achieved by preventing reprotonation of the Schiff base through a mutation of the primary proton donor (E108Q). Our data reveal unexpected large and alternating 13C chemical shift changes in the K-state propagating away from the Schiff base along the polyene chain. Furthermore, two different M-states have been observed reflecting the Schiff base reorientation after the de-protonation step. Our study provides novel insight into the photocycle of PR and also demonstrates the power of DNP-enhanced solid-state NMR to bridge the gap between functional and structural data and models

    Genomic reconstruction of the SARS-CoV-2 epidemic in England

    Get PDF
    AbstractThe evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus leads to new variants that warrant timely epidemiological characterization. Here we use the dense genomic surveillance data generated by the COVID-19 Genomics UK Consortium to reconstruct the dynamics of 71 different lineages in each of 315 English local authorities between September 2020 and June 2021. This analysis reveals a series of subepidemics that peaked in early autumn 2020, followed by a jump in transmissibility of the B.1.1.7/Alpha lineage. The Alpha variant grew when other lineages declined during the second national lockdown and regionally tiered restrictions between November and December 2020. A third more stringent national lockdown suppressed the Alpha variant and eliminated nearly all other lineages in early 2021. Yet a series of variants (most of which contained the spike E484K mutation) defied these trends and persisted at moderately increasing proportions. However, by accounting for sustained introductions, we found that the transmissibility of these variants is unlikely to have exceeded the transmissibility of the Alpha variant. Finally, B.1.617.2/Delta was repeatedly introduced in England and grew rapidly in early summer 2021, constituting approximately 98% of sampled SARS-CoV-2 genomes on 26 June 2021.</jats:p
    corecore