2,894 research outputs found

    Near infrared imaging of the broad absorption line quasar BAL QSO 0134+3253

    Full text link
    In this paper we present near infrared (NIR) imaging data of the host galaxy of the broad absorption line quasar (BALQ) at z=2.169, serendipitously found close to 3C48. The data were obtained with the ESO-VLT camera ISAAC during period 67. We find extended, rest-frame optical emission around the BALQ after subtracting a scaled stellar point spread function from the quasar nucleus in J, H, and Ks. The extended rest-frame optical emission can be interpreted as an approximately 2 Gyr old stellar population composing the host galaxy of the BALQ or a stellar population of similar age associated with an intermediate (z=1.667) absorption system spectroscopically identified by Canalizo & Stockton (1998) simultaneously. The rest-frame-UV emission on the other hand is dominated by a young, 500 Myr old stellar population. The UV/optical colors resemble a mixture of the two populations, of which the young one accounts for about 80%. Assuming that the residual emission is located at the BALQ redshift, we find that the host galaxy has a resolved flux of about 10% of the BALQ flux. The physical scale is quite compact, typical for radio quiet QSOs or Lyman break galaxies at these redshifts, indicating that the systems are still in the process of forming.Comment: 14 pages, referee style, 6 figures, 4 tables, accepted for publication in A&

    Reconstruction of Stellar Orbits Close to Sagittarius A*: Possibilities for Testing General Relativity

    Full text link
    We have reconstructed possible orbits for a collection of stars located within 0.5 arcsec of Sgr A*. These orbits are constrained by observed stellar positions and angular proper motions. The construction of such orbits serves as a baseline from which to search for possible deviations due to the unseen mass distribution in the central 1000 AU of the Galaxy. We also discuss the likelihood that some of these stars may eventually exhibit detectable relativistic effects, allowing for interesting tests of general relativity around the 2.6 x 10^6 solar mass central object.Comment: 20 pages, 5 figures submitted to Astrophysical Journal, substantial changes and additions based on referee's comment

    A Black Hole in the Galactic Center Complex IRS 13E?

    Full text link
    The IRS 13E complex is an unusual concentration of massive, early-type stars at a projected distance of ~0.13 pc from the Milky Way's central supermassive black hole Sagittarius A* (Sgr A*). Because of their similar proper motion and their common nature as massive, young stars it has recently been suggested that IRS 13E may be the remnant of a massive stellar cluster containing an intermediate-mass black hole (IMBH) that binds its members gravitationally in the tidal field of Sgr A*. Here, we present an analysis of the proper motions in the IRS~13E environment that combines the currently best available data with a time line of 10 years. We find that an IMBH in IRS 13E must have a minimum mass of ~10^4 solar masses in order to bind the source complex gravitationally. This high mass limit in combination with the absence so far of compelling evidence for a non-thermal radio and X-ray source in IRS 13E make it appear unlikely that an IMBH exists in IRS 13E that is sufficiently massive to bind the system gravitationally.Comment: accepted by AP

    L- and M-band imaging observations of the Galactic Center region

    Full text link
    We present near-infrared H-, K-, L- and M-band photometry of the Galactic Center from images obtained at the ESO VLT in May and August 2002, using the NAOS/CONICA (H and K) and the ISAAC (L and M) instruments. The large field of view (70" x 70") of the ISAAC instrument and the large number of sources identified (L-M data for 541 sources) allows us to investigate colors, infrared excesses and extended dust emission. Our new L-band magnitude calibration reveals an offset to the traditionally used calibrations, which we attribute to the use of the variable star IRS7 as a flux calibrator. Together with new results on the extinction towards the Galactic Center (Scoville et al. 2003; Raab 2000), our magnitude calibration results in stellar color properties expected from standard stars and removes any necessity to modify the K-band extinction. The large number of sources for which we have obtained L-M colors allows us to measure the M-band extinction to A_M=(0.056+-0.006)A_V (approximately =A_L), a considerably higher value than what has so far been assumed. L-M color data has not been investigated previously, due to lack of useful M-band data. We find that this color is a useful diagnostic tool for the preliminary identification of stellar types, since hot and cool stars show a fairly clear L-M color separation. This is especially important if visual colors are not available, as in the Galactic Center. For one of the most prominent dust embedded sources, IRS3, we find extended L- and M-band continuum emission with a characteristic bow-shock shape. An explanation for this appearance is that IRS3 consists of a massive, hot, young mass-losing star surrounded by an optically thick, extended dust shell, which is pushed northwest by wind from the direction of the IRS16 cluster and SgrA*.Comment: 24 pages, 7 figures, 2 tables, accepted for publication in Astronomy & Astrophysic

    Resolving the Host Galaxy of the Nearby QSO I Zw 1 with Sub-Arcsecond Multi-Transition Molecular Line Observations

    Full text link
    We present the first sub-kpc 0.7" (~ 850 pc) resolution 12CO(1-0) molecular line observations of the ISM in the host galaxy of the QSO I Zw 1. The observations were obtained with the BIMA mm-interferometer in its compact A configuration. The BIMA data are complemented by new observations of the 12CO(2-1) and 13CO(1-0) line with IRAM Plateau de Bure mm-interferometer (PdBI) at 0.9" and 1.9" resolution, respectively. These measurements, which are part of a multi-wavelength study of the host galaxy of I Zw 1, are aimed at comparing the ISM properties of a QSO host with those of nearby galaxies as well as to obtain constraints on galaxy formation/evolution models. Our images of the 12CO(1-0) line emission show a ring-like structure in the circumnuclear molecular gas distribution with an inner radius of about 1.2 kpc. The presence of such a molecular gas ring was predicted from earlier lower angular resolution PdBI 12CO(1-0) observations. A comparison of the BIMA data with IRAM PdBI 12CO(2-1) observations shows variations in the excitation conditions of the molecular gas in the innermost 1.5" comprising the nuclear region of I Zw 1. The observed properties of the molecular cloud complexes in the disk of the host galaxy suggest that they can be the sites of massive circumnuclear star formation, and show no indications of excitation by the nuclear AGN. This all indicates that the molecular gas in a QSO host galaxy has similar properties to the gas observed in nearby low luminosity AGNs.Comment: to be published in ApJ 1 July 2004 issu

    Simultaneous NIR/sub-mm observation of flare emission from SgrA*

    Get PDF
    We report on a successful, simultaneous observation and modeling of the sub-millimeter to near-infrared flare emission of the Sgr A* counterpart associated with the super-massive black hole at the Galactic center. Our modeling is based on simultaneous observations that have been carried out on 03 June, 2008 using the NACO adaptive optics (AO) instrument at the ESO VLT and the LABOCA bolometer at the APEX telescope. Inspection and modeling of the light curves show that the sub-mm follows the NIR emission with a delay of 1.5+/-0.5 hours. We explain the flare emission delay by an adiabatic expansion of the source components.Comment: 12 pages, 9 figures, 3 tables, in press with A&
    corecore