30 research outputs found

    Variational analysis of drifter positions and model outputs for the reconstruction of surface currents in the central Adriatic during fall 2002

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C04004, doi:10.1029/2007JC004148.In this paper we present an application of a variational method for the reconstruction of the velocity field in a coastal flow in the central Adriatic Sea, using in situ data from surface drifters and outputs from the ROMS circulation model. The variational approach, previously developed and tested for mesoscale open ocean flows, has been improved and adapted to account for inhomogeneities on boundary current dynamics over complex bathymetry and coastline and for weak Lagrangian persistence in coastal flows. The velocity reconstruction is performed using nine drifter trajectories over 45 d, and a hierarchy of indirect tests is introduced to evaluate the results as the real ocean state is not known. For internal consistency and impact of the analysis, three diagnostics characterizing the particle prediction and transport, in terms of residence times in various zones and export rates from the boundary current toward the interior, show that the reconstruction is quite effective. A qualitative comparison with sea color data from the MODIS satellite images shows that the reconstruction significantly improves the description of the boundary current with respect to the ROMS model first guess, capturing its main features and its exchanges with the interior when sampled by the drifters.Four of the authors are supported by the Office of Naval Research, V.T. and A.G. under grants N00014-05-1-0094 and N00014-05-1-0095, P.M.P. under grant N00014-03-1-0291, and S.C. under grant N00014-05-1-0730. CNR-ISMAR activity was partially supported by P.O.R. ‘‘CAINO’’ (Regione Puglia), VECTOR (Italian MIUR) project, and ECOOP (EU project)

    Near-coastal circulation in the Northern Humboldt Current System from shipboard ADCP data

    No full text
    International audienceThe near-coastal circulation of the Northern Humboldt Current System is described analyzing ∼8700 velocity profiles acquired by a shipboard acoustic Doppler current profiler (SADCP) during 21 surveys realized between 2008 and 2012 along the Peruvian coast. This data set permits observation of (i) part of the Peru Coastal Current and the Peru Oceanic Current that flow equatorward in near-surface layers close to the coast and farther than ∼150 km from the coast, respectively; (ii) the Peru-Chile Undercurrent (PCUC) flowing poleward in subsurface layers along the outer continental shelf and inner slope; (iii) the near-surfacing Equatorial Undercurrent renamed as Ecuador-Peru Coastal Current that feeds the PCUC; and (iv) a deep equatorward current, referred to as the Chile-Peru Deep Coastal Current, flowing below the PCUC. A focus in the PCUC core layer shows that this current exhibits typical velocities of 5-10 cm s−1. The PCUC deepens with an increasing thickness poleward, consistent with the alongshore conservation of potential vorticity. The PCUC mass transport increases from ∼1.8 Sv at 5°S to a maximum value of ∼5.2 Sv at 15°S, partly explained by the Sverdrup balance. The PCUC experiences relatively weak seasonal variability and the confluence of eddy-like structures and coastal currents strongly complicates the circulation. The PCUC intensity is also affected by the southward propagation of coastally trapped waves, as revealed by a strong PCUC intensification in March 2010 coincident with the passage of a downwelling coastal wave associated with a weak El Niño event

    Functional effects of the hadal sea cucumber Elpidia atakama (Echinodermata: Holothuroidea, Elasipodida) reflect small-scale patterns of resource availability

    No full text
    Holothuroidea represent the dominant benthic megafauna in hadal trenches (similar to 6,000-11,000 m), but little is known about their behaviour and functional role at such depths. Using a time-lapse camera at 8,074 m in the Peru-Chile Trench (SE Pacific Ocean), we provide the first in situ observations of locomotory activity for the elasipodid holothurian Elpidia atakama Belyaev in Shirshov Inst Oceanol 92: 326-367, (1971). Time-lapse sequences reveal 'run and mill' behaviour whereby bouts of feeding activity are interspersed by periods of locomotion. Over the total observation period (20 h 25 min), we observed a mean (+/- SD) locomotion speed of 7.0 +/- 5.7 BL h(-1), but this increased to 10.9 +/- 7.2 BL h(-1) during active relocation and reduced to 4.8 +/- 2.9 BL h(-1) during feeding. These observations show E. atakama translocates and processes sediment at rates comparable to shallower species despite extreme hydrostatic pressure and remoteness from surface-derived food
    corecore