105 research outputs found

    Large-scale mass wasting in the western Indian Ocean constrains onset of East African rifting

    Get PDF
    Faulting and earthquakes occur extensively along the flanks of the East African Rift System, including an offshore branch in the western Indian Ocean, resulting in remobilization of sediment in the form of landslides. To date, constraints on the occurrence of submarine landslides at margin scale are lacking, leaving unanswered a link between rifting and slope instability. Here, we show the first overview of landslide deposits in the post-Eocene stratigraphy of the Tanzania margin and we present the discovery of one of the biggest landslides on Earth: the Mafia mega-slide. The emplacement of multiple landslides, including the Mafia mega-slide, during the early-mid Miocene is coeval with cratonic rifting in Tanzania, indicating that plateau uplift and rifting in East Africa triggered large and potentially tsunamigenic landslides likely through earthquake activity and enhanced sediment supply. This study is a first step to evaluate the risk associated with submarine landslides in the region

    Large-scale mass wasting in the western Indian Ocean constrains onset of East African rifting

    Get PDF
    Faulting and earthquakes occur extensively along the flanks of the East African Rift System, including an offshore branch in the western Indian Ocean, resulting in remobilization of sediment in the form of landslides. To date, constraints on the occurrence of submarine landslides at margin scale are lacking, leaving unanswered a link between rifting and slope instability. Here, we show the first overview of landslide deposits in the post-Eocene stratigraphy of the Tanzania margin and we present the discovery of one of the biggest landslides on Earth: the Mafia mega-slide. The emplacement of multiple landslides, including the Mafia mega-slide, during the early-mid Miocene is coeval with cratonic rifting in Tanzania, indicating that plateau uplift and rifting in East Africa triggered large and potentially tsunamigenic landslides likely through earthquake activity and enhanced sediment supply. This study is a first step to evaluate the risk associated with submarine landslides in the region

    Acquisition of a Unique Onshore/Offshore Geophysical and Geochemical Dataset in the Northern Malawi (Nyasa) Rift

    Get PDF
    The Study of Extension and maGmatism in Malawi aNd Tanzania (SEGMeNT) project acquired a comprehensive suite of geophysical and geochemical datasets across the northern Malawi (Nyasa) rift in the East Africa rift system. Onshore/offshore active and passive seismic data, long‐period and wideband magnetotelluric data, continuous Global Positioning System data, and geochemical samples were acquired between 2012 and 2016. This combination of data is intended to elucidate the sedimentary, crustal, and upper‐mantle architecture of the rift, patterns of active deformation, and the origin and age of rift‐related magmatism. A unique component of our program was the acquisition of seismic data in Lake Malawi, including seismic reflection, onshore/offshore wide‐angle seismic reflection/refraction, and broadband seismic data from lake‐bottom seismometers, a towed streamer, and a large towed air‐gun source

    Geotourism, iconic landforms and island-style speciation patterns in National Parks of East Africa:

    Get PDF
    Many of the national parks in East Africa are equally as famous for their iconic landforms as they are for their diversity and concentrations of fauna and flora. The newly formed Ngorongoro-Lengai Geopark in northern Tanzania is the first geopark to be established in the region, but there is remarkable potential for geotourism in the majority of the national parks. The most spectacular landforms have been shaped by the East African Rift System. Formation of the two major rifts in the region, the Albertine Rift (or western branch) and the Gregory Rift (or eastern branch), was accompanied, or in some cases preceded, by extensive alkaline volcanism. The rifting and volcanism are primarily Late Cenozoic phenomenon that dissected and overprinted the older regional plateaus. Rifting impacted the regional drainage and captured major rivers, including the Victoria Nile

    Cardiovascular responses to cognitive stress in patients with migraine and tension-type headache

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to investigate the temporal relationship between autonomic changes and pain activation in migraine and tension-type headache induced by stress in a model relevant for everyday office-work.</p> <p>Methods</p> <p>We measured pain, blood pressure (BP), heart rate (HR) and skin blood flow (BF) during and after controlled low-grade cognitive stress in 22 migraineurs during headache-free periods, 18 patients with tension-type headache (TTH) and 44 healthy controls. The stress lasted for one hour and was followed by 30 minutes of relaxation.</p> <p>Results</p> <p>Cardiovascular responses to cognitive stress in migraine did not differ from those in control subjects. In TTH patients HR was maintained during stress, whereas it decreased for migraineurs and controls. A trend towards a delayed systolic BP response during stress was also observed in TTH. Finger BF recovery was delayed after stress and stress-induced pain was associated with less vasoconstriction in TTH during recovery.</p> <p>Conclusion</p> <p>It is hypothesized that TTH patients have different stress adaptive mechanisms than controls and migraineurs, involving delayed cardiovascular adaptation and reduced pain control system inhibition.</p

    A pulse of mid-Pleistocene rift volcanism in Ethiopia at the dawn of modern humans

    Get PDF
    The Ethiopian Rift Valley hosts the longest record of human co-existence with volcanoes on Earth, however, current understanding of the magnitude and timing of large explosive eruptions in this region is poor. Detailed records of volcanism are essential for interpreting the palaeoenvironments occupied by our hominin ancestors; and also for evaluating the volcanic hazards posed to the 10 million people currently living within this active rift zone. Here we use new geochronological evidence to suggest that a 200 km-long segment of rift experienced a major pulse of explosive volcanic activity between 320 and 170 ka. During this period, at least four distinct volcanic centres underwent large-volume (&gt;10 km3) caldera-forming eruptions, and eruptive fluxes were elevated five times above the average eruption rate for the past 700 ka. We propose that such pulses of episodic silicic volcanism would have drastically remodelled landscapes and ecosystems occupied by early hominin populations

    Cryptic Diversity of African Tigerfish (Genus Hydrocynus) Reveals Palaeogeographic Signatures of Linked Neogene Geotectonic Events

    Get PDF
    The geobiotic history of landscapes can exhibit controls by tectonics over biotic evolution. This causal relationship positions ecologically specialized species as biotic indicators to decipher details of landscape evolution. Phylogeographic statistics that reconstruct spatio-temporal details of evolutionary histories of aquatic species, including fishes, can reveal key events of drainage evolution, notably where geochronological resolution is insufficient. Where geochronological resolution is insufficient, phylogeographic statistics that reconstruct spatio-temporal details of evolutionary histories of aquatic species, notably fishes, can reveal key events of drainage evolution. This study evaluates paleo-environmental causes of mitochondrial DNA (mtDNA) based phylogeographic records of tigerfishes, genus Hydrocynus, in order to reconstruct their evolutionary history in relation to landscape evolution across Africa. Strong geographical structuring in a cytochrome b (cyt-b) gene phylogeny confirms the established morphological diversity of Hydrocynus and reveals the existence of five previously unknown lineages, with Hydrocynus tanzaniae sister to a clade comprising three previously unknown lineages (Groups B, C and D) and H. vittatus. The dated phylogeny constrains the principal cladogenic events that have structured Hydrocynus diversity from the late Miocene to the Plio-Pleistocene (ca. 0–16 Ma). Phylogeographic tests reveal that the diversity and distribution of Hydrocynus reflects a complex history of vicariance and dispersals, whereby range expansions in particular species testify to changes to drainage basins. Principal divergence events in Hydrocynus have interfaced closely with evolving drainage systems across tropical Africa. Tigerfish evolution is attributed to dominant control by pulses of geotectonism across the African plate. Phylogenetic relationships and divergence estimates among the ten mtDNA lineages illustrates where and when local tectonic events modified Africa's Neogene drainage. Haplotypes shared amongst extant Hydrocynus populations across northern Africa testify to recent dispersals that were facilitated by late Neogene connections across the Nilo-Sahelian drainage. These events in tigerfish evolution concur broadly with available geological evidence and reveal prominent control by the African Rift System, evident in the formative events archived in phylogeographic records of tigerfish
    corecore