532 research outputs found

    Caveolin-1 protects B6129 mice against Helicobacter pylori gastritis.

    Get PDF
    Caveolin-1 (Cav1) is a scaffold protein and pathogen receptor in the mucosa of the gastrointestinal tract. Chronic infection of gastric epithelial cells by Helicobacter pylori (H. pylori) is a major risk factor for human gastric cancer (GC) where Cav1 is frequently down-regulated. However, the function of Cav1 in H. pylori infection and pathogenesis of GC remained unknown. We show here that Cav1-deficient mice, infected for 11 months with the CagA-delivery deficient H. pylori strain SS1, developed more severe gastritis and tissue damage, including loss of parietal cells and foveolar hyperplasia, and displayed lower colonisation of the gastric mucosa than wild-type B6129 littermates. Cav1-null mice showed enhanced infiltration of macrophages and B-cells and secretion of chemokines (RANTES) but had reduced levels of CD25+ regulatory T-cells. Cav1-deficient human GC cells (AGS), infected with the CagA-delivery proficient H. pylori strain G27, were more sensitive to CagA-related cytoskeletal stress morphologies ("humming bird") compared to AGS cells stably transfected with Cav1 (AGS/Cav1). Infection of AGS/Cav1 cells triggered the recruitment of p120 RhoGTPase-activating protein/deleted in liver cancer-1 (p120RhoGAP/DLC1) to Cav1 and counteracted CagA-induced cytoskeletal rearrangements. In human GC cell lines (MKN45, N87) and mouse stomach tissue, H. pylori down-regulated endogenous expression of Cav1 independently of CagA. Mechanistically, H. pylori activated sterol-responsive element-binding protein-1 (SREBP1) to repress transcription of the human Cav1 gene from sterol-responsive elements (SREs) in the proximal Cav1 promoter. These data suggested a protective role of Cav1 against H. pylori-induced inflammation and tissue damage. We propose that H. pylori exploits down-regulation of Cav1 to subvert the host's immune response and to promote signalling of its virulence factors in host cells

    Pathophysiology of acute experimental pancreatitis: Lessons from genetically engineered animal models and new molecular approaches

    Get PDF
    The incidence of acute pancreatitis is growing and worldwide population-based studies report a doubling or tripling since the 1970s. 25% of acute pancreatitis are severe and associated with histological changes of necrotizing pancreatitis. There is still no specific medical treatment for acute pancreatitis. The average mortality resides around 10%. In order to develop new specific medical treatment strategies for acute pancreatitis, a better understanding of the pathophysiology during the onset of acute pancreatitis is necessary. Since it is difficult to study the early acinar events in human pancreatitis, several animal models of acute pancreatitis have been developed. By this, it is hoped that clues into human pathophysiology become possible. In the last decade, while employing molecular biology techniques, a major progress has been made. The genome of the mouse was recently sequenced. Various strategies are possible to prove a causal effect of a single gene or protein, using either gain-of-function (i.e., overexpression of the protein of interest) or loss-of-function studies (i.e., genetic deletion of the gene of interest). The availability of transgenic mouse models and gene deletion studies has clearly increased our knowledge about the pathophysiology of acute pancreatitis and enables us to study and confirm in vitro findings in animal models. In addition, transgenic models with specific genetic deletion or overexpression of genes help in understanding the role of one specific protein in a cascade of inflammatory processes such as pancreatitis where different proteins interact and co-react. This review summarizes the recent progress in this field. Copyright (c) 2005 S. Karger AG, Basel

    Reduced PTEN expression in the pancreas overexpressing transforming growth factor-beta 1

    Get PDF
    PTEN is a candidate tumour suppressor gene and frequently mutated in multiple cancers, however, not in pancreatic cancer. Recently, it has been demonstrated that PTEN expression is regulated by TGF-β1. Using TGF-β1 transgenic mice (n=7) and wildtype littermates (n=6), as well as pancreatic tissues obtained from organ donors (n=10) and patients with pancreatic cancer (n=10), we assessed the expression of PTEN by means of immunohistochemistry and semiquantitative PCR analysis. In addition, PANC-1 cells were treated with TGF-β1 in vitro and the levels of PTEN mRNA were determined in these cells. In human pancreatic cancers PTEN mRNA levels were significantly decreased (P<0.05). In addition, in the pancreas of TGF-β1 transgenic mice the expression of PTEN was significantly reduced (P<0.01), as compared to wildtype littermates and incubation of PANC-1 cells with TGF-β1 decreased PTEN mRNA levels after 24 h. Inasmuch as TGF-β1 decreases PTEN expression in human pancreatic cancer cells and human pancreatic cancers overexpress TGF-β1, the reduced expression of PTEN in pancreatic cancer may be mediated by TGF-β1 overexpression. Thus, although PTEN is not mutated in pancreatic cancers, the reduction of its expression may give pancreatic cancer cells an additional growth advantage

    Morphological Characters of the Thickbody Skate Amblyraja frerichsi (Krefft 1968) (Rajiformes: Rajidae), with Notes on Its Biology

    Get PDF
    Detailed descriptions of morphological features, morphometrics, neurocranium anatomy, clasper structure and egg case descriptions are provided for the thickbody skate Amblyraja frerichsi; a rare, deep-water species from Chile, Argentina and Falkland Islands. The species diagnosis is complemented from new observations and aspects such as colour, size and distribution are described. Geographic and bathymetric distributional ranges are discussed as relevant features of this taxońs biology. Additionally, the conservation status is assessed including bycatch records from Chilean fisheries

    Promoter methylation of CDKN2A and lack of p16 expression characterize patients with hepatocellular carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The product of CDKN2A, p16 is an essential regulator of the cell cycle controlling the entry into the S-phase. Herein, we evaluated CDKN2A promoter methylation and p16 protein expression for the differentiation of hepatocellular carcinoma (HCC) from other liver tumors.</p> <p>Methods</p> <p>Tumor and corresponding non-tumor liver tissue samples were obtained from 85 patients with liver tumors. CDKN2A promoter methylation was studied using MethyLight technique and methylation-specific PCR (MSP). In the MethyLight analysis, samples with ≥ 4% of PMR (percentage of methylated reference) were regarded as hypermethylated. p16 expression was evaluated by immunohistochemistry in tissue sections (n = 148) obtained from 81 patients using an immunoreactivity score (IRS) ranging from 0 (no expression) to 6 (strong expression).</p> <p>Results</p> <p>Hypermethylation of the CDKN2A promoter was found in 23 HCCs (69.7%; mean PMR = 42.34 ± 27.8%), six (20.7%; mean PMR = 31.85 ± 18%) liver metastases and in the extralesional tissue of only one patient. Using MSP, 32% of the non-tumor (n = 85), 70% of the HCCs, 40% of the CCCs and 24% of the liver metastases were hypermethylated. Correspondingly, nuclear p16 expression was found immunohistochemically in five (10.9%, mean IRS = 0.5) HCCs, 23 (92%; mean IRS = 4.9) metastases and only occasionally in hepatocytes of non-lesional liver tissues (mean IRS = 1.2). The difference of CDKN2A-methylation and p16 protein expression between HCCs and liver metastases was statistically significant (p < 0.01, respectively).</p> <p>Conclusion</p> <p>Promoter methylation of CDKN2A gene and lack of p16 expression characterize patients with HCC.</p

    Immunohistochemical analysis of changes in signaling pathway activation downstream of growth factor receptors in pancreatic duct cell carcinogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The pathogenesis of pancreatic ductal adenocarcinoma (PDAC) involves multi-stage development of molecular aberrations affecting signaling pathways that regulate cancer growth and progression. This study was performed to gain a better understanding of the abnormal signaling that occurs in PDAC compared with normal duct epithelia.</p> <p>Methods</p> <p>We performed immunohistochemistry on a tissue microarray of 26 PDAC, 13 normal appearing adjacent pancreatic ductal epithelia, and 12 normal non-PDAC ducts. We compared the levels of 18 signaling proteins including growth factor receptors, tumor suppressors and 13 of their putative downstream phosphorylated (p-) signal transducers in PDAC to those in normal ductal epithelia.</p> <p>Results</p> <p>The overall profiles of signaling protein expression levels, activation states and sub-cellular distribution in PDAC cells were distinguishable from non-neoplastic ductal epithelia. The ERK pathway activation was correlated with high levels of <sup>S2448</sup>p-mTOR (100%, p = 0.05), <sup>T389</sup>p-S6K (100%, p = 0.02 and <sup>S235/236</sup>p-S6 (86%, p = 0.005). Additionally, <sup>T389</sup>p-S6K correlated with <sup>S727</sup>p-STAT3 (86%, p = 0.005). Advanced tumors with lymph node metastasis were characterized by high levels of <sup>S276</sup>p-NFκB (100%, p = 0.05) and <sup>S9</sup>p-GSK3β (100%, p = 0.05). High levels of PKBβ/AKT2, EGFR, as well as nuclear <sup>T202/Y204</sup>p-ERK and <sup>T180/Y182</sup>p-p38 were observed in normal ducts adjacent to PDAC compared with non-cancerous pancreas.</p> <p>Conclusion</p> <p>Multiple signaling proteins are activated in pancreatic duct cell carcinogenesis including those associated with the ERK, PKB/AKT, mTOR and STAT3 pathways. The ERK pathway activation appears also increased in duct epithelia adjacent to carcinoma, suggesting tumor micro-environmental effects.</p

    Heterogeneous Host Susceptibility Enhances Prevalence of Mixed-Genotype Micro-Parasite Infections

    Get PDF
    Dose response in micro-parasite infections is usually shallower than predicted by the independent action model, which assumes that each infectious unit has a probability of infection that is independent of the presence of other infectious units. Moreover, the prevalence of mixed-genotype infections was greater than predicted by this model. No probabilistic infection model has been proposed to account for the higher prevalence of mixed-genotype infections. We use model selection within a set of four alternative models to explain high prevalence of mixed-genotype infections in combination with a shallow dose response. These models contrast dependent versus independent action of micro-parasite infectious units, and homogeneous versus heterogeneous host susceptibility. We specifically consider a situation in which genome differences between genotypes are minimal, and highly unlikely to result in genotype-genotype interactions. Data on dose response and mixed-genotype infection prevalence were collected by challenging fifth instar Spodoptera exigua larvae with two genotypes of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV), differing only in a 100 bp PCR marker sequence. We show that an independent action model that includes heterogeneity in host susceptibility can explain both the shallow dose response and the high prevalence of mixed-genotype infections. Theoretical results indicate that variation in host susceptibility is inextricably linked to increased prevalence of mixed-genotype infections. We have shown, to our knowledge for the first time, how heterogeneity in host susceptibility affects mixed-genotype infection prevalence. No evidence was found that virions operate dependently. While it has been recognized that heterogeneity in host susceptibility must be included in models of micro-parasite transmission and epidemiology to account for dose response, here we show that heterogeneity in susceptibility is also a fundamental principle explaining patterns of pathogen genetic diversity among hosts in a population. This principle has potentially wide implications for the monitoring, modeling and management of infectious diseases

    Acute WNT signalling activation perturbs differentiation within the adult stomach and rapidly leads to tumour formation

    Get PDF
    A role for WNT signalling in gastric carcinogenesis has been suggested due to two major observations. First, patients with germline mutations in adenomatous polyposis coli (APC) are susceptible to stomach polyps and second, in gastric cancer, WNT activation confers a poor prognosis. However, the functional significance of deregulated WNT signalling in gastric homoeostasis and cancer is still unclear. In this study we have addressed this by investigating the immediate effects of WNT signalling activation within the stomach epithelium. We have specifically activated the WNT signalling pathway within the mouse adult gastric epithelium via deletion of either glycogen synthase kinase 3 (GSK3) or APC or via expression of a constitutively active β-catenin protein. WNT pathway deregulation dramatically affects stomach homoeostasis at very short latencies. In the corpus, there is rapid loss of parietal cells with fundic gland polyp (FGP) formation and adenomatous change, which are similar to those observed in familial adenomatous polyposis. In the antrum, adenomas occur from 4 days post-WNT activation. Taken together, these data show a pivotal role for WNT signalling in gastric homoeostasis, FGP formation and adenomagenesis. Loss of the parietal cell population and corresponding FGP formation, an early event in gastric carcinogenesis, as well as antral adenoma formation are immediate effects of nuclear β-catenin translocation and WNT target gene expression. Furthermore, our inducible murine model will permit a better understanding of the molecular changes required to drive tumourigenesis in the stomach

    The distinctive gastric fluid proteome in gastric cancer reveals a multi-biomarker diagnostic profile

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Overall gastric cancer survival remains poor mainly because there are no reliable methods for identifying highly curable early stage disease. Multi-protein profiling of gastric fluids, obtained from the anatomic site of pathology, could reveal diagnostic proteomic fingerprints.</p> <p>Methods</p> <p>Protein profiles were generated from gastric fluid samples of 19 gastric cancer and 36 benign gastritides patients undergoing elective, clinically-indicated gastroscopy using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry on multiple ProteinChip arrays. Proteomic features were compared by significance analysis of microarray algorithm and two-way hierarchical clustering. A second blinded sample set (24 gastric cancers and 29 clinically benign gastritides) was used for validation.</p> <p>Results</p> <p>By significance analysyis of microarray, 60 proteomic features were up-regulated and 46 were down-regulated in gastric cancer samples (<it>p </it>< 0.01). Multimarker clustering showed two distinctive proteomic profiles independent of age and ethnicity. Eighteen of 19 cancer samples clustered together (sensitivity 95%) while 27/36 of non-cancer samples clustered in a second group. Nine non-cancer samples that clustered with cancer samples included 5 pre-malignant lesions (1 adenomatous polyp and 4 intestinal metaplasia). Validation using a second sample set showed the sensitivity and specificity to be 88% and 93%, respectively. Positive predictive value of the combined data was 0.80. Selected peptide sequencing identified pepsinogen C and pepsin A activation peptide as significantly down-regulated and alpha-defensin as significantly up-regulated.</p> <p>Conclusion</p> <p>This simple and reproducible multimarker proteomic assay could supplement clinical gastroscopic evaluation of symptomatic patients to enhance diagnostic accuracy for gastric cancer and pre-malignant lesions.</p
    corecore