3,023 research outputs found

    J Fluorescence

    Get PDF
    The scope of this paper is to illustrate the need for an improved quality assurance in fluorometry. For this purpose, instrumental sources of error and their influences on the reliability and comparability of fluorescence data are highlighted for frequently used photoluminescence techniques ranging from conventional macro- and microfluorometry over fluorescence microscopy and flow cytometry to microarray technology as well as in vivo fluorescence imaging. Particularly, the need for and requirements on fluorescence standards for the characterization and performance validation of fluorescence instruments, to enhance the comparability of fluorescence data, and to enable quantitative fluorescence analysis are discussed. Special emphasis is dedicated to spectral fluorescence standards and fluorescence intensity standards

    The universality class of fluctuating pulled fronts

    Get PDF
    It has recently been proposed that fluctuating ``pulled'' fronts propagating into an unstable state should not be in the standard KPZ universality class for rough interface growth. We introduce an effective field equation for this class of problems, and show on the basis of it that noisy pulled fronts in {\em d+1} bulk dimensions should be in the universality class of the {\em (d+1)+1}D KPZ equation rather than of the {\em d+1}D KPZ equation. Our scenario ties together a number of heretofore unexplained observations in the literature, and is supported by previous numerical results.Comment: 4 pages, 2 figure

    Form factors of heavy-to-light B decays at large recoil

    Get PDF
    General relations between the form factors of B decays to light mesons are derived using the heavy quark and large recoil expansion. On their basis the complete account of contributions of second order in the ratio of the light meson mass to the large recoil energy is performed. Both ground and excited final meson states are considered. It is shown that most of the known form factor relations remain valid after the inclusion of quadratic mass corrections. The validity of some of such relations requires additional equalities for the helicity amplitudes. It is found that all these relations and equalities are fulfilled in the relativistic quark model based on the quasipotential approach in quantum field theory. The contribution of 1/m_b corrections to the branching fraction of the rare radiative B decay is discussed.Comment: 23 pages, revte

    A comparison of 3D particle, fluid and hybrid simulations for negative streamers

    Full text link
    In the high field region at the head of a discharge streamer, the electron energy distribution develops a long tail. In negative streamers, these electrons can run away and contribute to energetic processes such as terrestrial gamma-ray and electron flashes. Moreover, electron density fluctuations can accelerate streamer branching. To track energies and locations of single electrons in relevant regions, we have developed a 3D hybrid model that couples a particle model in the region of high fields and low electron densities with a fluid model in the rest of the domain. Here we validate our 3D hybrid model on a 3D (super-)particle model for negative streamers in overvolted gaps, and we show that it almost reaches the computational efficiency of a 3D fluid model. We also show that the extended fluid model approximates the particle and the hybrid model well until stochastic fluctuations become important, while the classical fluid model underestimates velocities and ionization densities. We compare density fluctuations and the onset of branching between the models, and we compare the front velocities with an analytical approximation

    The Weakly Pushed Nature of "Pulled" Fronts with a Cutoff

    Get PDF
    The concept of pulled fronts with a cutoff ϵ\epsilon has been introduced to model the effects of discrete nature of the constituent particles on the asymptotic front speed in models with continuum variables (Pulled fronts are the fronts which propagate into an unstable state, and have an asymptotic front speed equal to the linear spreading speed vv^* of small linear perturbations around the unstable state). In this paper, we demonstrate that the introduction of a cutoff actually makes such pulled fronts weakly pushed. For the nonlinear diffusion equation with a cutoff, we show that the longest relaxation times τm\tau_m that govern the convergence to the asymptotic front speed and profile, are given by τm1[(m+1)21]π2/ln2ϵ\tau_m^{-1} \simeq [(m+1)^2-1] \pi^2 / \ln^2 \epsilon, for m=1,2,...m=1,2,....Comment: 4 pages, 2 figures, submitted to Brief Reports, Phys. Rev.

    Massive quark propagator and competition between chiral and diquark condensate

    Get PDF
    The Green-function approach has been extended to the moderate baryon density region in the framework of an extended Nambu--Jona-Lasinio model, and the thermodynamic potential with both chiral and diquark condensates has been evaluated by using the massive quark propagator. The phase structure along the chemical potential direction has been investigated and the strong competition between the chiral and diquark condensate has been analyzed by investigating the influence of the diquark condensate on the sharp Fermi surface. The influence of the diquark condensate on the quark properties has been investigated, even though the quarks in the color breaking phase are very different from that in the chiral breaking phase, the difference between quarks in different colors is very small.Comment: Revtex, 34 pages, 7 figures, section V revised, accepted by PR

    Statistics at the tip of a branching random walk and the delay of traveling waves

    Full text link
    We study the limiting distribution of particles at the frontier of a branching random walk. The positions of these particles can be viewed as the lowest energies of a directed polymer in a random medium in the mean-field case. We show that the average distances between these leading particles can be computed as the delay of a traveling wave evolving according to the Fisher-KPP front equation. These average distances exhibit universal behaviors, different from those of the probability cascades studied recently in the context of mean field spin-glasses.Comment: 4 pages, 2 figure
    corecore