1,549 research outputs found

    Functional renormalization group for commensurate antiferromagnets: Beyond the mean-field picture

    Full text link
    We present a functional renormalization group (fRG) formalism for interacting fermions on lattices that captures the flow into states with commensurate spin-density wave order. During the flow, the growth of the order parameter is fed back into the flow of the interactions and all modes can be integrated out. This extends previous fRG flows in the symmetric phase that run into a divergence at a nonzero RG scale, i.e., that have to be stopped at the ordering scale. We use the corresponding Ward identity to check the accuracy of the results. We apply our new method to a model with two Fermi pockets that have perfect particle-hole nesting. The results obtained from the fRG are compared with those in random phase approximation.Comment: revised version; 24 pages, 12 figure

    Failure detection and isolation investigation for strapdown skew redundant tetrad laser gyro inertial sensor arrays

    Get PDF
    The degree to which flight-critical failures in a strapdown laser gyro tetrad sensor assembly can be isolated in short-haul aircraft after a failure occurrence has been detected by the skewed sensor failure-detection voting logic is investigated along with the degree to which a failure in the tetrad computer can be detected and isolated at the computer level, assuming a dual-redundant computer configuration. The tetrad system was mechanized with two two-axis inertial navigation channels (INCs), each containing two gyro/accelerometer axes, computer, control circuitry, and input/output circuitry. Gyro/accelerometer data is crossfed between the two INCs to enable each computer to independently perform the navigation task. Computer calculations are synchronized between the computers so that calculated quantities are identical and may be compared. Fail-safe performance (identification of the first failure) is accomplished with a probability approaching 100 percent of the time, while fail-operational performance (identification and isolation of the first failure) is achieved 93 to 96 percent of the time

    Analysis of Fourier transform valuation formulas and applications

    Full text link
    The aim of this article is to provide a systematic analysis of the conditions such that Fourier transform valuation formulas are valid in a general framework; i.e. when the option has an arbitrary payoff function and depends on the path of the asset price process. An interplay between the conditions on the payoff function and the process arises naturally. We also extend these results to the multi-dimensional case, and discuss the calculation of Greeks by Fourier transform methods. As an application, we price options on the minimum of two assets in L\'evy and stochastic volatility models.Comment: 26 pages, 3 figures, to appear in Appl. Math. Financ

    Quantum propagation of neutral atoms in a magnetic quadrupole guide

    Get PDF
    We consider the quantized motion of neutral atoms at very low temperature in a two-dimensional magnetic quadrupole structure formed, for example, by four current-carrying wires along the z direction. The magnetic field B in the guide is proportional to the vector (x, - y). We show that this field can be used to make a single-mode atomic de Broglie waveguide which has bound states of low angular momentum, even though the field at the center of the guide goes to zero. We investigate the spectrum and decay rate of the transverse modes for spin-1/2 and spin-1 atoms

    Sonoluminescence as a QED vacuum effect. II: Finite Volume Effects

    Get PDF
    In a companion paper [quant-ph/9904013] we have investigated several variations of Schwinger's proposed mechanism for sonoluminescence. We demonstrated that any realistic version of Schwinger's mechanism must depend on extremely rapid (femtosecond) changes in refractive index, and discussed ways in which this might be physically plausible. To keep that discussion tractable, the technical computations in that paper were limited to the case of a homogeneous dielectric medium. In this paper we investigate the additional complications introduced by finite-volume effects. The basic physical scenario remains the same, but we now deal with finite spherical bubbles, and so must decompose the electromagnetic field into Spherical Harmonics and Bessel functions. We demonstrate how to set up the formalism for calculating Bogolubov coefficients in the sudden approximation, and show that we qualitatively retain the results previously obtained using the homogeneous-dielectric (infinite volume) approximation.Comment: 23 pages, LaTeX 209, ReV-TeX 3.2, five figure

    Combining requirements engineering techniques - theory and case study

    Get PDF
    © Copyright 2005 IEEEThe selection of requirements engineering (RE) techniques during software project development is a challenge for most developers. One of the reasons is that there is a great lack of requirements engineering education in most academic programs, so software developers have to learn requirements engineering practices on the job. This can easily result in the selection of techniques that are ill-suited for a particular project, as the selection is based on personal preference rather than on the characteristics of the project. Very little research has been done in the area of technique selection based on project attributes. This paper describes research into the selection and combination of RE techniques as well as a case study that applied the selection process to an industrial software project.Li Jiang, Armin Eberlein, Behrouz H. Fa

    All metrics have curvature tensors characterised by its invariants as a limit: the \epsilon-property

    Get PDF
    We prove a generalisation of the ϵ\epsilon-property, namely that for any dimension and signature, a metric which is not characterised by its polynomial scalar curvature invariants, there is a frame such that the components of the curvature tensors can be arbitrary close to a certain "background". This "background" is defined by its curvature tensors: it is characterised by its curvature tensors and has the same polynomial curvature invariants as the original metric.Comment: 6 page
    corecore