We prove a generalisation of the ϵ-property, namely that for any
dimension and signature, a metric which is not characterised by its polynomial
scalar curvature invariants, there is a frame such that the components of the
curvature tensors can be arbitrary close to a certain "background". This
"background" is defined by its curvature tensors: it is characterised by its
curvature tensors and has the same polynomial curvature invariants as the
original metric.Comment: 6 page