research

All metrics have curvature tensors characterised by its invariants as a limit: the \epsilon-property

Abstract

We prove a generalisation of the ϵ\epsilon-property, namely that for any dimension and signature, a metric which is not characterised by its polynomial scalar curvature invariants, there is a frame such that the components of the curvature tensors can be arbitrary close to a certain "background". This "background" is defined by its curvature tensors: it is characterised by its curvature tensors and has the same polynomial curvature invariants as the original metric.Comment: 6 page

    Similar works