1,810 research outputs found

    Directional motion of forced polymer chains with hydrodynamic interaction

    Get PDF
    We study the propulsion of a one-dimensional (1D) polymer chain under sinusoidal external forces in the overdamped (low Reynolds number) regime. We show that, when hydrodynamical interactions are included, the polymer presents directional motion which depends on the phase differences of the external force applied along the chain. Moreover, the velocity shows a maximum as a function of the frequency. We discuss the relevance of all these results in light of recent nanotechnology experiments.Comment: 5 pages, 6 figure

    A measurement of large-scale peculiar velocities of clusters of galaxies: results and cosmological implications

    Full text link
    Peculiar velocities of clusters of galaxies can be measured by studying the fluctuations in the cosmic microwave background (CMB) generated by the scattering of the microwave photons by the hot X-ray emitting gas inside clusters. While for individual clusters such measurements result in large errors, a large statistical sample of clusters allows one to study cumulative quantities dominated by the overall bulk flow of the sample with the statistical errors integrating down. We present results from such a measurement using the largest all-sky X-ray cluster catalog combined to date and the 3-year WMAP CMB data. We find a strong and coherent bulk flow on scales out to at least > 300 h^{-1} Mpc, the limit of our catalog. This flow is difficult to explain by gravitational evolution within the framework of the concordance LCDM model and may be indicative of the tilt exerted across the entire current horizon by far-away pre-inflationary inhomogeneities.Comment: Ap.J. (Letters), in press. 20 Oct issue (Vol. 686

    Statistical Mechanics of Canonical-Dissipative Systems and Applications to Swarm Dynamics

    Full text link
    We develop the theory of canonical-dissipative systems, based on the assumption that both the conservative and the dissipative elements of the dynamics are determined by invariants of motion. In this case, known solutions for conservative systems can be used for an extension of the dynamics, which also includes elements such as the take-up/dissipation of energy. This way, a rather complex dynamics can be mapped to an analytically tractable model, while still covering important features of non-equilibrium systems. In our paper, this approach is used to derive a rather general swarm model that considers (a) the energetic conditions of swarming, i.e. for active motion, (b) interactions between the particles based on global couplings. We derive analytical expressions for the non-equilibrium velocity distribution and the mean squared displacement of the swarm. Further, we investigate the influence of different global couplings on the overall behavior of the swarm by means of particle-based computer simulations and compare them with the analytical estimations.Comment: 14 pages incl. 13 figures. v2: misprints in Eq. (40) corrected, ref. updated. For related work see also: http://summa.physik.hu-berlin.de/~frank/active.htm

    A measurement of large-scale peculiar velocities of clusters of galaxies: technical details

    Full text link
    This paper presents detailed analysis of large-scale peculiar motions derived from a sample of ~ 700 X-ray clusters and cosmic microwave background (CMB) data obtained with WMAP. We use the kinematic Sunyaev-Zeldovich (KSZ) effect combining it into a cumulative statistic which preserves the bulk motion component with the noise integrated down. Such statistic is the dipole of CMB temperature fluctuations evaluated over the pixels of the cluster catalog (Kashlinsky & Atrio-Barandela 2000). To remove the cosmological CMB fluctuations the maps are Wiener-filtered in each of the eight WMAP channels (Q, V, W) which have negligible foreground component. Our findings are as follows: The thermal SZ (TSZ) component of the clusters is described well by the Navarro-Frenk-White profile expected if the hot gas traces the dark matter in the cluster potential wells. Such gas has X-ray temperature decreasing rapidly towards the cluster outskirts, which we demonstrate results in the decrease of the TSZ component as the aperture is increased to encompass the cluster outskirts. We then detect a statistically significant dipole in the CMB pixels at cluster positions. Arising exclusively at the cluster pixels this dipole cannot originate from the foreground or instrument noise emissions and must be produced by the CMB photons which interacted with the hot intracluster gas via the SZ effect. The dipole remains as the monopole component, due to the TSZ effect, vanishes within the small statistical noise out to the maximal aperture where we still detect the TSZ component. We demonstrate with simulations that the mask and cross-talk effects are small for our catalog and contribute negligibly to the measurements. The measured dipole thus arises from the KSZ effect produced by the coherent large scale bulk flow motion.Comment: Minor changes to match the published version - Ap.J., 1 Feb 2009 issu

    Canonical active Brownian motion

    Full text link
    Active Brownian motion is the complex motion of active Brownian particles. They are active in the sense that they can transform their internal energy into energy of motion and thus create complex motion patterns. Theories of active Brownian motion so far imposed couplings between the internal energy and the kinetic energy of the system. We investigate how this idea can be naturally taken further to include also couplings to the potential energy, which finally leads to a general theory of canonical dissipative systems. Explicit analytical and numerical studies are done for the motion of one particle in harmonic external potentials. Apart from stationary solutions, we study non-equilibrium dynamics and show the existence of various bifurcation phenomena.Comment: 11 pages, 6 figures, a few remarks and references adde

    On anomalous diffusion in a plasma in velocity space

    Get PDF
    The problem of anomalous diffusion in momentum space is considered for plasma-like systems on the basis of a new collision integral, which is appropriate for consideration of the probability transition function (PTF) with long tails in momentum space. The generalized Fokker-Planck equation for description of diffusion (in momentum space) of particles (ions, grains etc.) in a stochastic system of light particles (electrons, or electrons and ions, respectively) is applied to the evolution of the momentum particle distribution in a plasma. In a plasma the developed approach is also applicable to the diffusion of particles with an arbitrary mass relation, due to the small characteristic momentum transfer. The cases of an exponentially decreasing in momentum space (including the Boltzmann-like) kernel in the PT-function, as well as the more general kernels, which create the anomalous diffusion in velocity space due to the long tail in the PT-function, are considered. Effective friction and diffusion coefficients for plasma-like systems are found.Comment: 18 pages, no figure

    CAIRNS: The Cluster And Infall Region Nearby Survey I. Redshifts and Mass Profiles

    Full text link
    The CAIRNS (Cluster And Infall Region Nearby Survey) project is a spectroscopic survey of the infall regions surrounding eight nearby, rich, X-ray luminous clusters of galaxies. We collect 15665 redshifts (3471 new or remeasured) within \sim 5-10 Mpc of the centers of the clusters, making it the largest study of the infall regions of clusters. We determine cluster membership and the mass profiles of the clusters based on the phase space distribution of the galaxies. All of the clusters display decreasing velocity dispersion profiles. The mass profiles are fit well by functional forms based on numerical simulations but exclude an isothermal sphere. Specifically, NFW and Hernquist models provide good descriptions of cluster mass profiles to their turnaround radii. Our sample shows that the predicted infall pattern is ubiquitous in rich, X-ray luminous clusters over a large mass range. The caustic mass estimates are in excellent agreement with independent X-ray estimates at small radii and with virial estimates at intermediate radii. The mean ratio of the caustic mass to the X-ray mass is 1.03\pm0.11 and the mean ratio of the caustic mass to the virial mass (when corrected for the surface pressure term) is 0.93\pm0.07. We further demonstrate that the caustic technique provides reasonable mass estimates even in merging clusters.Comment: 54 pages, 18 figures, to appear in The Astronomical Journa

    Revealing the magnetic field in a distant galaxy cluster: discovery of the complex radio emission from MACS J0717.5 +3745

    Full text link
    Aims. To study at multiple frequencies the radio emission arising from the massive galaxy cluster MACS J0717.5+3745 (z=0.55). Known to be an extremely complex cluster merger, the system is uniquely suited for an investigation of the phenomena at work in the intra-cluster medium (ICM) during cluster collisions. Methods. We use multi-frequency and multi-resolution data obtained with the Very Large Array radio telescope, and X-ray features revealed by Chandra, to probe the non-thermal and thermal components of the ICM, their relations and interactions. Results. The cluster shows highly complex radio emission. A bright, giant radio halo is detected at frequencies as high as 4.8 GHz. MACS J0717.5+3745 is the most distant cluster currently known to host a radio halo. This radio halo is also the most powerful ever observed, and the second case for which polarized radio emission has been detected, indicating that the magnetic field is ordered on large scales.Comment: 14 pages, 13 figures, Astronomy and Astrophysics, accepte
    • …
    corecore