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The problem of anomalous diffusion in momentum space is considered for plasmalike systems on
the basis of a new collision integral, which is appropriate for consideration of the probability
transition function �PTF� with long tails in momentum space. The generalized Fokker–Planck
equation for description of diffusion �in momentum space� of particles �ions, grains, etc.� in a
stochastic system of light particles �electrons or electrons and ions, respectively� is applied to the
evolution of the momentum particle distribution in a plasma. In a plasma the developed approach is
also applicable to the diffusion of particles with an arbitrary mass relation due to the small
characteristic momentum transfer. The cases of an exponentially decreasing �including a
Boltzmann-like� kernel in the PTF in momentum space, as well as more general kernels, which
create anomalous diffusion in velocity space due to the long tail in the PTF, are considered. Effective
friction and diffusion coefficients for plasmalike systems are found. © 2010 American Institute of
Physics. �doi:10.1063/1.3377779�

I. INTRODUCTION

Diffusion in coordinate and in momentum �velocity�
space is of fundamental importance and has attracted a grow-
ing interest during many years since the description of this
process provides a simplified and effective key for address-
ing of many problems of the kinetic theory.

Deviations from a linear time dependence, i.e.,
�r2�t��� t, of the mean square displacement in coordinate
space have been experimentally observed, in particular, un-
der essentially nonequilibrium conditions or for some disor-
dered systems. The average square separation of a pair of
particles passively moving in a turbulent flow grows, accord-
ing to Richardson’s law, with the third power of time.1 For
diffusion typical for glasses and related complex systems,2

the observed time dependence is slower than linear. These
two types of anomalous diffusion are obviously character-
ized as superdiffusion �r2�t��� t� ���1� and subdiffusion
���1�.3 For a description of these two diffusion regimes a
number of effective models and methods have been sug-
gested. The continuous time random walk model of Scher
and Montroll,4 leading to subdiffusion behavior, provides a
basis for understanding photoconductivity in strongly disor-
dered and glassy semiconductors. The Levy-flight model,5

leading to superdiffusion, describes various phenomena as
self-diffusion in micelle systems,6 reaction, and transport in
polymer systems,7 and is applicable even to the stochastic
description of financial market indices.8 Both cases can be
effectively described by generalized diffusion equations with
fractional derivatives in time or in coordinates, respectively.9

For example, different aspects of the anomalous diffusion in
coordinate space were considered within this scheme in Refs.
10 and 11.

However, recently a more general approach has been
suggested in Refs. 12 and 13. This approach allows us to
reproduce the results of the standard fractional differentiation
method in coordinate space, when the latter is applicable,
and enable to describe more complicated cases of anomalous
diffusion processes. In Ref. 14 this approach has also been
applied to the case of diffusion in a time-dependent external
field in coordinate space. In what follows, we concentrate on
the problem of diffusion in momentum space in application
to plasma systems.

Problems of diffusion in momentum space have been
considered for plasmas in the fundamental study by Landau15

and later by Rostoker and Rosenbluth, Lenard, Balescu, Kli-
montovich, and many others. Various theoretical and experi-
mental aspects of these investigations can be found in Refs.
16–18.

Here our main interest is focused on anomalous diffu-
sion in momentum space by using the methods developed in
Refs. 12 and 13 for coordinate space. Recently, see Ref. 19,
a new kinetic equation for anomalous diffusion in velocity
space has been derived on the basis of an appropriate expan-
sion of probability transition function �PTF� and some par-
ticular problems were investigated on this basis. In the
present paper the problem of anomalous diffusion in momen-
tum �velocity� space will be considered for plasmalike
systems.

Some aspects of anomalous diffusion in velocity space
have been investigated during the past decade in a number of
studies.20–23 In particular, in Ref. 22 the phenomenological
equation for anomalous diffusion in velocity space for a
magnetized plasma has been obtained on the basis of the
Langevin model with the linear friction proportional to the
particle velocity and with non-Gauss noise. The correspond-
ing Fokker–Planck-type equation included a diffusion term
with a fractional derivative and the usual drift term with thea�Electronic mail: satron@mail.ru.
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first momentum derivative. The applicability of this equation
is limited due to phenomenological nature of the considered
model. We should mention the analogy of this equation with
the structure of the equation for anomalous diffusion in co-
ordinate space under action of an external field.11,14 An equa-
tion similar to that in Ref. 22 has recently been applied in
Ref. 23 to describe the evolution of the velocity distribution
function of strongly nonequilibrium hot and rarified plasmas.
Such types of plasma exist, e.g., in tokomaks. On the whole,
in comparison with anomalous diffusion in coordinate space,
anomalous diffusion in velocity space has been studied to a
modest extent.

In this paper the problem of anomalous diffusion in mo-
mentum �velocity� space will be considered for plasmalike
systems. In spite of formal similarity, the physical �and math-
ematical� nature of diffusion in momentum space is very
different from that in coordinate space. This is clear already
from the fact that momentum conservation, which takes
place in momentum space, has no analogy in coordinate
space.

Diffusion in velocity space for the cases of normal and
anomalous behavior of the PTF is presented in Sec. II. Start-
ing from the argumentation based on the Boltzmann-type of
the PTF, we describe the new approach to the kinetic equa-
tion, which in fact can be applied to the wide class of PTF
functions based on the prescribed distribution function for
one �light� sort of particles. The anomalous diffusion in mo-
mentum space for plasma is analyzed in Sec. III on the basis
of the Boltzmann-type kernel for PTF. Models of anomalous
diffusion for plasmalike systems are considered in Sec. IV. In
Sec. V the generalized Fokker–Planck equation for diffusion,
written for the formal Fourier component f�s , t� of the distri-
bution function f�p , t�, is represented in partial derivatives in
velocity space. This representation is possible only in par-
ticular cases of the power dependence of the coefficients in
the generalized diffusion equation.

II. CALCULATION OF THE DIFFUSION
IN THE VELOCITY SPACE ON THE BASIS
OF A MASTER-TYPE EQUATION

Let us consider now the main problem formulated in the
introduction, namely, diffusion in momentum space
�V-space� on the basis of the master equation, which de-
scribes the balance of grains entering and leaving point p at
time t �see, e.g., Refs. 24 and 25�,

df�p,t�
dt

=� dp	w�p,p��f�p�,t� − w�p�,p�f�p,t�
 . �1�

The structure of this equation is formally similar to the mas-
ter equation �see, e.g., Ref. 13� in coordinate space. Here
w�p ,p�� is the kernel describing the transition probabilities.
Note that there is only one rather general condition, which
w�p ,p�� should satisfy if the stationary solution exists: the
detailed balance condition for a stationary distribution func-
tion fst�p�, which reads

w�p,p��
w�p�,p�

=
fst�p�
fst�p��

. �2�

In the following analysis we use a form of the master
equation26 equivalent to Eq. �1�,

df�p,t�
dt

=� dq	W�q,p + q�f�p + q,t� − W�q,p�f�p,t�
 .

�3�

The probability transition W�p ,p�� describes the probability
for a grain with momentum p� at point p� in momentum
space to transfer from this point p� to the point p per unit
time. The momentum transfer is equal to q=p�−p. Of
course, as mentioned above, the overall momentum has to be
conserved.

Assuming in the beginning that the characteristic
changes in momentum are small, one may expand Eq. �3�
and arrive at the Fokker–Planck form of the equation for the
density distribution f�p , t�,

df�p,t�
dt

=
�

�p�
�A��p�f�p,t� +

�

�p�

�B���p�f�p,t��� , �4�

A��p� =� drqq�W�q,p� ,

�5�

B���p� =
1

2
� drqq�q�W�q,p� .

The coefficients A� and B�� describe the friction force and
diffusion, respectively. Here r is the momentum space
dimension.

Because the velocity of heavy particles is small, the
p-dependence of the PTF can be neglected for the calculation
of diffusion coefficient, which in this case is constant
B��=���B, where B is the integral

B =
1

2r
� drqq2W�q� . �6�

If we neglect the p-dependence of the PTF at all, we arrive at
A�=0 �while the diffusion coefficient is constant�. In this
approach, which is known to be incorrect, the coefficient A�

for the Fokker–Planck equation can be determined on the
basis of the argument that the stationary distribution function
is Maxwellian. In this way we arrive at the standard form of
the coefficient MTA��p�= p�B, which is one of the forms of
Einstein’s relation. For systems far from equilibrium this ar-
gument is not acceptable.

Following Ref. 1 we now generalize the Fokker–Planck
approach to find the coefficients of the kinetic equation,
which are applicable also to slowly decreasing PTFs. We
apply a more general approach, based on the difference in
the velocities for light and heavy particles. For calculation of
the function A� we have to take into account that the function
W�q ,p� is scalar and depends on the variables q ,q ·p , p. Ex-
panding W�q ,p� on q ·p one arrives at the following ap-
proximate representation of the function W�q ,p�:
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W�q,p�  W�q� + W̃��q��q · p� + 1
2W̃��q��q · p�2, �7�

where W̃��q���W�q ,q ·p� /��qp� �q·p=0 and W̃��q�
��2W�q ,q ·p� /��qp�2 �q·p=0.

Then, with the necessary accuracy, A� equals

A��p� =� drqq�q�p�W̃��q�

= p�� drqq�q�W̃��q�

=
p�

r
� drqq2W̃��q� . �8�

If the function W�q ,p� satisfies the equality W̃��q�
=W�q� /2MT, we obtain the known Einstein relation

MTA��p� = p�B . �9�

Let us check this relation for Boltzmann-type collisions,
which are described by the PTF W�q ,p�=wB�q ,p�,13

wB�q,p� =
2�

�2q
�

q/2�

�

duu
d	

do
�arccos�1 −

q2

2�2u2�,u�

fb�u2 + v2 − q · v/�� , �10�

where �p=Mv� and d	�� ,u� /do, �, and fb are the differen-
tial scattering cross section, the mass, and distribution func-
tion for the light particles, respectively. In Eq. �10� we took
into account the approximate equalities for the scattering of
light and heavy particles q2= ��p�2= p�2�1−cos � and
�, where p�=�u is the momentum of the light particle
before collision.

For the equilibrium Maxwellian distribution fb
0 the

equality W̃��q�=W�q� /2MT is evident and we derive the
usual Fokker–Planck equation in velocity space with con-
stant diffusion and friction coefficients D=B /M2 and friction
�=B /MT=DM /T, respectively, which satisfy the Einstein
relation.

For some nonequilibrium situations the PTF, as a func-
tion of the variable q, possesses a long tail. In this case we
have to derive a generalization of the kinetic equation in the
spirit of the analysis of the coordinate case13,14 because the
diffusion and friction coefficients in the form of Eqs. �6� and
�8� diverge for large q if the functions have an asymptotic

behavior W�q��1 /q� with ��r+2 and �or� W̃��q��1 /q�

with ��r+2.
Inserting expansion �7� for W�q ,p� in Eq. �3� �as an

example, we choose r=3; the analysis for arbitrary r runs in
a similar way� we arrive at a new collision term in the kinetic
equation, which can be considered as a generalization of the
Fokker–Planck equation for anomalous diffusion in velocity
space,19

df�s,t�
dt

= A�s�f�s� + B��s�
� f�s,t�

�s�

. �11�

In fact, as shown in Ref. 19, in expansion �7� for W�q ,p� we
have to keep �with the necessary accuracy� only the terms
linear in qp and p. The function f�s� in Eq. �11� is the

Fourier-component f�s�=��dp / �2��3�exp�ips�fg�p , t� and
the coefficients are equal to

A�s� =� dq	exp�− i�qs�� − 1
W�q�

= 4��
0

�

dqq2� sin�qs�
qs

− 1�W�q� , �12�

B� � s�B�s� ,

�13�

B�s� = −
i

s2� dqqs	exp�− i�qs� − 1�
W̃��q�

=
4�

s2 �
0

�

dqq2�cos�qs� −
sin�qs�

qs
�W̃��q� .

Here we took into account the existence of the small param-
eter � /M and we omitted the small on this parameter terms
of order p2 and W� in Eq. �7�.

For the isotropic function f�s�= f�s� one can rewrite Eq.
�11� in the form

df�s,t�
dt

= A�s�fg�s� + B�s�s
� f�s,t�

�s
. �14�

For the case of strongly decreasing PTF the exponent under
the integrals for the functions A�s� and B�s� can be expanded
as

A�s�  = −
s2

6
� dqq2W�q�, B�s�  −

1

3
� dqq2W̃��q� .

�15�

Then the simplified kinetic equation for the case of short
range on q-variable PTF �nonequilibrium, in general case�
reads

df�s,t�
dt

= A0s2f�s� + B0s
� f�s�

�s
, �16�

where A0�−1 /6�dqq2W�q� and B0�−1 /3�dqq2W̃��q�.
The stationary solution of Eq. �14� reads

f�s,t� = C exp�− �
0

s

ds�
A�s��

s�B�s��� = C exp�−
A0s2

2B0
� .

�17�

The corresponding normalized stationary momentum distri-
bution is given by

f�p� =
NB0

3/2

�2�A0�3/2exp�−
B0p2

2A0
� . �18�

Therefore, in Eq. �17� the constant C=N, where N is the total
number of particles in the system, which undergo diffusive
motion. Equation �16� and this distribution are the generali-
zation of the Fokker–Planck case for normal diffusion in a
nonequilibrium situation with strongly decreasing kernels
W�q�, W��q�, when the prescribed PTF function W�q ,p� is
determined, e.g., by some non-Maxwellian distribution of the
small particles fb. To show this in an alternative way, let us
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take the Fourier transformation of Eq. �11� and the corre-
sponding coefficients A and B�,

df�p,t�
dt

= − A0
�2f�p,t�

�p2 − B0
��p�f�p,t��

�p�

. �19�

We then arrive at a Fokker–Planck-type equation with
friction coefficient �=−B0 and diffusion coefficient
D=−A0 /M2. In general these coefficients �Eq. �15�� do not
satisfy the Einstein relation.

In the case of equilibrium W-function �e.g., fb= fb
0, see

above� the equality W̃��q�=W�q� /2MTb is satisfied. Then we
find A�s� /sB�s��A0 /B0=MTb. In this case the Einstein rela-
tion between the diffusion and friction coefficients D
=�T /M is satisfied and the standard Fokker–Planck equation
is valid. In the general case, however, the general equations
�11�–�13� have to be used.

III. DIFFUSION IN PLASMA SYSTEMS ON THE BASIS
OF BOLTZMANN-TYPE COLLISIONS

Let us calculate the PTF for the case of Coulomb colli-
sions. The differential cross section for the Coulomb scatter-
ing d	 /do equals

d	��,u�
do

= �Ze2/2�u2�2 1

sin4�

2

= �Ze2/2�u2�216�4u4

q4 , �20�

where �=arccos�1−q2 /2�2u2�. Then

wB
Coul�q,p� =

2�

�2q
�

q/2�

�

duu�Ze2/2�u2�2



16�4u4

q4 fb�u2 + v2 − q · v/��

=
8Z2e4�

q5 �
q/2�

�

duufb�u2 + v2 − q · v/�� . �21�

It is necessary to stress that in the case of the Coulomb
interaction the general equations �11� and �14� are applicable
not only for diffusion of heavy particles in a light particle
medium but also for arbitrary mass relations. The reason for
this statement is the typical small transfer of momenta in the
Coulomb systems.

Let us calculate now the coefficients A��p� and B���p�
to compare the results with the linearized Landau kinetic
equation, in which these coefficients depend on p. This im-
plies that for the Coulomb interaction the expansion by
�q ·p� has to be performed at finite p.

At first we consider the approximation in the spirit of the
usual Fokker–Planck approach. Equations �5� and �8� lead to
the expressions

A��p� =� d3qq�wB
Coul�q,p� �

p�

3
� d3qq2w̃B�

Coul�q� ,

�22�

B���p� =
1

2
� d3qq�q�wB

Coul�q,p�

�
1

2
� d3qq�q�wB

Coul�q� , �23�

where

wB
Coul�q� =

8Z2e4�

q5 �
q/2�

�

duufb�u2� , �24�

w̃B�
Coul�q� = −

8Z2e4�

M�q5 �
q/2�

�

duufb��u
2� ,

�25�

w̃B�
Coul�q� = −

4Z2e4�

MTq5 �
q/2�

�

duufb�u2� ,

and fb��y���fb�y� /�y. The procedure that we used here im-
plies that the long tails of the functions wB

Coul�q� and
w̃B�

Coul�q� are absent. It is easy to see that expressions �24�
and �25� in the limit of small q �the lower limit of the inte-
grals in these equations is taken equal to zero, which corre-
sponds to the Landau small-q expansion� are appropriate in
the Fokker–Planck equation to the Landau approach for the
kinetic equation for plasma. In this case the coefficients
A��p� and B���p� read

A��p� �
p�

3
� d3qq2w̃B�

Coul�q�

� −
16�2Z2e4p�

3MT
ln�qmax

qmin
�J , �26�

B�� �
���

6
� d3qq2wB

Coul�q� � ���

16�2Z2e4

3
ln�qmax

qmin
�J ,

�27�

J = �
0

�

duufb�u2� =
n��

�2��3/2�T
. �28�

Therefore, one can rewrite A��−p��ie, where �ie is the char-
acteristic frequency friction ions on electrons,

�ie =
4�2�Z2e4n�1/2

3MT3/2 ln�qmax

qmin
� . �29�

The corresponding friction force per unit volume Fie is equal
Fie=niMU�ie, where U is the relative velocity of the elec-
trons and ions.27 In fact, the divergence at large q handled by
a cutoff is an artifact. This becomes clear when calculating
the equilibrium function wB

Coul,0�q ,p� more accurately, with-
out expansion on small values of q.

For the equilibrium distribution function fb
0�u�

=ne�� /2�T�3/2exp�−�u2 /2T� the PTF function reads
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wB
Coul,0�q,p� =

4neZ
2e4�

q5


exp�− ��v2 − q · v/��/2T�


�
q/2�

�

du2��/2�T�3/2exp�− �u2/2T�

=
4neZ

2e4�1/2

�2�Tq5


exp�− ��v2 − q · v/� + q2/4�2�/2T� ,

�30�

wB�
Coul,0�q,p� =

2neZ
2e4�1/2

�2�MT3q5


exp�− ��v2 − q · v/� + q2/4�2�/2T� .

�31�

Using the Fokker–Planck approximation for the coefficients
A��p� and B���p�, and Eqs. �35� and �31� we find

A��p� �
p�

3
� d3qq2w̃B�

Coul,0�q,0� =
p�2neZ

2e4�1/2

3�2�MT3
J1,

�32�

B�� �
���

6
� d3qq2wB

Coul,0�q,0� =
2neZ

2e4�1/2���

3�2�T
J1,

�33�

where

J1 =� d3qq−3 exp�− q2/8�T�

= 4��
0

� dq

q
exp�− q2/8�T�

 4��
qmin

� dq

q
exp�− q2/8�T�

= 2��
qmin

2 /8�T

� d�

�
exp�− �� = − 2�Ei�− q2/2�T��qmin

�

 − 2�Ei�− qmin
2 /2�T� . �34�

We can suppose that the minimal momentum transfer qmin is
determined from the equality qmin

2 /2�T=rmin /rmax. Accord-
ing to the Landau theory for a weakly interacting plasma
rmin /rmax=Ze2 /TrD�1 for Ze2 /�vT�1, or rmin /rmax

=�2 /2�TrD�1 for the opposite inequality Ze2 /�vT�1.

Here rD is the Debye radius and vT=�T /� is of the order of
the thermal velocity. In our approach the cutoff for the small
momenta is satisfied automatically and corresponds to the
second inequality �the “quantum” case�.

For a weakly nonideal plasma this means a cutoff at the
minimal momentum qmin=� /rD. Then

J1 = − 2�C + 4� ln� rD

rmin
�  4� ln� rD

rmin
� , �35�

where rmin
2 ��2 /2�T and C0.577 is the Euler constant.

It is easy to verify that W̃��q�=W�q� /2MT and W̃��q�
=W�q� /4M2T2 �in the case under consideration W�q ,p�
�wB

Coul,0�q ,p��. Therefore, for the equilibrium case the usual
Fokker–Planck equation for heavy particles �ions or dusty
particles in dusty plasmas� is, naturally, valid with a good
accuracy, owing to the exponential convergence of the inte-
grals in the coefficients A�s� and B��s� at high values of q.
The term with W� in Eq. �7� is negligible, according to the
above general statement. However, for small q the coeffi-
cients A and B� have the logarithmical divergence typical for
the Coulomb interaction because W�1 /q5, just like W��q�.
As follows from Eq. �21�, this divergence not only exists for
equilibrium but for an arbitrary distribution function fb. The
simplest physical way to avoid this divergence is to cut the
integrals for A and B� in Eqs. �12� and �13� for small q by
the Debye radius 1 /rD, following the well known Landau
procedure. We are more interested to find examples for non-
exponential behavior of W, which may occur, e.g., for some
specific non-Maxwellian distributions fb.

IV. MODELS OF ANOMALOUS DIFFUSION
FOR COULOMB INTERACTION

Now we can calculate the coefficients for models of
anomalous diffusion in plasmalike systems. At first we cal-
culate the model of a Coulomb system with two species of
particles with masses � and M ��. Let us suppose that in
the model under consideration the small particles are de-
scribed by a prescribed stationary distribution fb=nb�b /u0

3

�where �b is the dimensionless distribution function and u0 is
the characteristic velocity for the distribution of the small
particles� and ���u2+v2−q ·v /�� /u0

2,

Wa�q,p� =
8�Z2e4nb

u0q5 �
�q2/4�2+v2−q·v/��/u0

2

�

d� · �b��� . �36�

First, let us consider a power-law distribution �b���
=C /�����1�,

Wa�q,p� = �8�Z2e4nbC

u0q5

�1−�

�1 − ��
�

�0

�

=
8�Z2e4nbC

u0q5

�0
1−�

� − 1
,

�37�

where �0��q2 /4�2+v2−q ·v /�� /u0
2.

For the case p=0 the value �0→ �̃0�q2 /4�2u0
2 and we

arrive at the following expression for anomalous W�Wa:

Wa�q,p = 0� =
8�Z2e4nbC

u0q5

�q/2�u0�2−2�

� − 1

=
22�+1�Z2e4nbu0

2�−3�2�−2C

�� − 1�q2�+3 . �38�

To determine the structure of the transport process and the
kinetic equation in velocity space we have to determine also

the functions W̃��q� and W̃��q�.
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If p�0 we have to use the full expression �0

��q2 /4�2+ p2 /M2−q ·p /M�� /u0
2 and its derivatives on q ·p

at p=0: �0�=−1 /M�u0
2 and �0�=0. Then

W̃��q,p� �
8�Z2e4nbC

M�u0
3q5�0

� , W̃��q,p� �
8��Z2e4nbC

M2�2u0
5q5�0

�+1 .

�39�

For p=0 ��0→ �̃0� we obtain the functions

W̃��q� �
22�+3�2�−1u0

2�−3�Z2e4nbC

Mq2�+5 ,

�40�

W̃��q� �
22�+5��2�u0

2�−3�Z2e4nbC

M2q2�+7 .

For the function A�s�, according to Eq. �12�, we find

A�s� � 4��
0

�

dqq2� sin�qs�
qs

− 1�W�q�

= 4�Ca�
0

�

dq
1

q2�+1� sin�qs�
qs

− 1� . �41�

Comparing the reduced equation �see below� in velocity
space with the diffusion in coordinate space �2�+3↔�
and W�q�=Ca /q2�+3� we can conclude that the integral
in the right-hand side of Eq. �41� �3d case� converges if
3�2�+3�5 or 0���1. The inequality ��1 implies con-
vergence for small q �q→0� and the inequality ��0 implies
convergence for q→�. Likewise for the integral in B�s�,

B�s� =
4�

s2 �
0

�

dqq2�cos�qs� −
sin�qs�

qs
�W̃��q� , �42�

convergence of B�s� exists for small q if ��0 and for large
q→� if ��−3 /2. Again, it is easy to show that the term
with W� can be omitted.

Therefore, for convergence of A and B for a large q we
require convergence for A, which implies ��0. For conver-
gence for small q it is sufficient to have convergence for B,
implying ��0. Therefore, for the case of pure power-law
behavior of the function fb��� convergence is absent. It is
also clear that the function fb���=C /�� ���1� cannot be
normalized. However, for anomalous diffusion in momentum
space in reality the convergence for small q is always ob-
tained, e.g., by a finite value of v or by a change in the small
q-behavior of W�q� by screening �compare with the ex-
amples of anomalous diffusion in coordinate space13�. There-
fore, in the model under consideration, the “anomalous dif-
fusion in velocity space” for a power-law behavior fb�u� �and
as a consequence with a power-law dependence of W�q� and

W̃��q�� on large q exists if for large q the asymptotic behav-
ior of W�q→���1 /q2�+3 with ��0. At the same time the
expansion of the exponential function in Eqs. �12� and �13�
under the integrals, leading to a Fokker–Planck-type kinetic
equation, is invalid for power-type kernels W�q ,p�.

As an example of the above statements, let us consider
the Cauchy–Lorentz-like distribution for the function fb

�r=3�,

fb�u2� = nb
v0

�2�u2 + v0
2�2 . �43�

Then we find

Wa�q,p� =
8Z2e4�

q5 �
q/2�

�

duufb�u2 + v2 − q · v/��

=
4v0

3Z2e4

�q5 �
�0

�

d�
1

1 + �2

=
4v0

3Z2e4

�q5 ��

2
− arctan �0� , �44�

where �0��q2 /4�2+v2−q ·v /�� /v0
2 and

W̃a��q,p� =
4v0Z2e4

M��q5

1

�0
2 + 1

. �45�

For large q functions �44� and �45� tend to Wa�q ,p�
16v0

5�2Z2e4 /�q7 and W̃a��q ,p�64v0
5�3Z2e4 /M�q9. For

small q convergence of the coefficients A�s� and B�s� cannot
be obtained since these functions are determined by the ex-

pressions Wa�q ,0� and W̃a��q ,0�. However, this problem can
be avoided by using a cutoff of the respective integrals �41�
and �42� at small q or by modification of the distribution �43�
at small q �in the spirit of the respective cutoff for anomalous
diffusion in coordinate space12�. For large q the Cauchy–
Lorentz-type of distributions have long tails, thus leading to
anomalous diffusion.

Let us now consider the formal general model for which

we will not connect the functions W�q� and W̃��q� with a
concrete form of W�q ,p�. Therefore we consider the prob-
lem suggesting some behavior of the function W�q ,p� but
not on the level of the distribution function fa. In general the
functional W�q ,p� is unknown. In this case one can suggest
that independently one from another, the functions W�q�,
W̃��q�, and W̃��q� possess a power-type q-dependence for a
large q.

As an example, this dependence can be taken as the

power type for two functions W�q��a /qa and W̃��q�
�b /q�, where ��0 and � are independent. Then, as follows
from the consideration above, convergence of the function W
exists if 5���3 �for asymptotically small and large q, re-

spectively�. For the function W̃��q� the convergence condi-
tion is 5���2 for asymptotically small and large q, respec-
tively.

Finally for the function W̃��q� the convergence condition
is 7���5 �for asymptotically small and large q, respec-
tively�. In this case the terms with W� can be omitted �for the
same reasons as above�.

For this example the kinetic equation �11� reads

df�s,t�
dt

= P0s�−3f�s,t� + s�−5P1si
�

�si
f�s,t� , �46�

where

P0 = 4�a�
0

�

d��2−�� sin �

�
− 1� , �47�
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P1 = 4�b�
0

�

d��2−��cos � −
sin �

�
� . �48�

Taking into account the isotropy in s-space we can rewrite
Eq. �46� in the form

df�s,t�
dt

= P0s�−3f�s,t� + s�−4P1
�

�s
f�s,t� , �49�

Naturally, Eqs. �46� and �49� can be formally rewritten in
momentum �or in velocity� space via the fractional deriva-
tives of various orders �see below�. Therefore, as is easy to
see, for the purely power-law behavior of the functions W�q�
and W̃��q� the solution with the convergent coefficients ex-
ists for powers in the intervals mentioned above. We estab-
lish that the universal type of anomalous diffusion in velocity
space in the case under consideration exists if 5���3 or
5���2. This universality seems similar to the universality
of the Levy distribution in coordinate space, where the
power � of the dependence of the PTF in coordinate space,
W�q̃��C / q̃� on the displacement q̃ lies in the interval 0
��=�−r�2 �r is the dimension of the coordinate space�.

As is easy to see the stationary solution of Eq. �49� reads

f�s� = C� exp�−
P0s�−�+2

�� − � + 2�P1
� . �50�

Of course, the general description above is also valid for the

more complicated functions W and W̃�, possessing a non-
power dependence on q at small q and an asymptotical
power dependence on q at large q. In this case the limitations
for convergence are connected only with large values of q,
namely, it is enough to provide the inequalities ��3 and
��2. Simple examples of such type of PTFs are �in analogy
with anomalous diffusion in coordinate space13�

Wa�q� =
1 − exp�− �qn�

q� , W̃a��q� =
1 − exp�− �qm�

q� .

�51�

The corresponding kinetic equations in these cases cannot be
written in partial derivatives and evolution of the system has
to be described by Eq. �11�, or for the isotropic case by Eq.
�14�. If external forces are present, they have to be included
in the usual way in the left side of Eq. �11�. Physically, this
type of PTF behavior can appear, in particular, for the case of
a turbulent plasma, when the development of some instabil-
ity can create a strong chaotic electrical field or irregular
chaotic motion of one sort of particles with a prescribed non-
Maxvellian distribution function. In such a turbulent plasma
scattering with large transferring momenta can play a crucial
role.

V. REPRESENTATION IN MOMENTUM SPACE
AND CONNECTION WITH THE FRACTIONAL
DIFFERENTIATION APPROACH

As mentioned, in general Eq. �11� cannot be written in
terms of fractional differentiation. It confirms that the ap-
proach to anomalous diffusion based on the Fourier transfor-

mation of the PTFs, in the form applied in this paper �see
also Refs. 13 and 19� is a more general way for the problems
under consideration.

However, for the purely power-type dependence of the

functions W�q��a /q� and W̃��q��b /q�, where � and � are
independent and satisfy the inequalities 5���3 and 5��
�2, Eq. �46� is appropriate and can be represented after
inverse Fourier transformation in the following form �with
the fractional derivatives�:

df�p,t�
dt

= P0��f�p,t� + P1���� +
�

�p
p� f�p,t� , �52�

where ����−3� �2���0�; �=�−5 �2���0�. Here we
introduced the fractional differentiation operator in the mo-
mentum space ��f�p , t���dss2� exp�−ips�f�s , t�.

Let us consider now formally a specific particular model
of anomalous diffusion, for which we assume a structure of
the PTF W�q ,p� with a rapid �say, exponential� decrease in

the function W̃��q�. Therefore, the exponential function un-
der the integrals in the coefficients B�s� can be expanded,
implying B�s�=B0 �or �=5 and B0� P1 in the notations of
Eq. �46��. At the same time the function W�q��a /q� has a
purely power-law dependence on q. The kinetic equation
�49� then reads

df�s,t�
dt

= P0s�−3f�s,t� + B0si
�

�si
f�s,t� �53�

or in momentum space, according to Eq. �52�,

df�p,t�
dt

= P0��f�p,t� − B0
�

�pi
�pif�p,t�� . �54�

Equation �54� is similar to the corresponding equation in
Ref. 22 where a model of the Langevin equation with a con-
stant friction frequency �0�−B0 has been considered. In
Ref. 23 a similar model with �=3 /2 has been applied to
estimate the fusion rate in a hot rarified plasma.

The stationary solution of Eq. �53� is

f�s� = C� exp�−
P0s�

�B0
� . �55�

The corresponding distribution in p-space is propor-
tional to the Levy-type distribution W�y ,���
��2y /���0

�dtt sin�yt�exp�−t���,

f�p� = C�� d3s exp�− ips�exp�−
P0s�

�B0
�

�
4�C�

p
�

0

�

dss sin�ps�exp�−
P0s�

�B0
� , �56�

with y� p��B0 / P0�1/� and ����. As an example for the case
�=1 we find f�p�,

f�p� =
8�C�P0

B0��p2 + 4P0
2/B0

2��2 . �57�

In the case �=1 the long tail of the distribution is propor-
tional to p−4 and the distribution f�p� corresponds with the
Cauchy–Lorentz distribution. Normalization of the distribu-
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tion f�p� leads to the value C�=n / �2��3, where n=N /V is
the average density of particles undergoing diffusion in ve-
locity space. A similar approach can be taken for other types
of anomalous diffusion in velocity space.

VI. CONCLUSIONS

In the present paper the problem of anomalous diffusion
for plasmalike systems in momentum �velocity� space is rig-
orously analyzed. A new kinetic equation for anomalous dif-
fusion in velocity space has been derived recently in Ref. 19,
without suggesting any stationary equilibrium distribution
function. We applied this equation to a system of charged
particles with different masses to describe diffusion of heavy
particles �ions and charged grains� in the surrounding light
particles �electrons for the electron-ion plasma, electrons,
and ions for dusty plasmas28�. The distribution of the light
particles can be non-Maxwellian, which is the cause of the
appearance of long tails in the PTF. Conditions of conver-
gence for the coefficients of the kinetic equation have been
derived for a number of particular cases. It is found that a
wide variety of anomalous processes in velocity space exists.

In general the Einstein relation for such a situation is not
applicable because the stationary state may be far from equi-
librium. For the case of normal diffusion the friction and
diffusion coefficients have been found explicitly for the non-
equilibrium case. For the equilibrium case the known
Fokker–Planck equation in plasma is reproduced as a par-
ticular case.
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