243 research outputs found

    Incoherent charge transport through molecular wires: interplay of Coulomb interaction and wire population

    Get PDF
    The influence of Coulomb interaction on the electron transport through molecular wires is studied in the regime of incoherent tunneling. In the limit of strong Coulomb repulsion, the current for spinless electrons is determined. It is shown that the voltage profile along the wire crucially influences the dependence of the current on the wire length. Upon inclusion of the spin degree of freedom one finds a blocking effect which depends both on the interaction strength and on the population of the wire. For finite Coulomb interaction, the temperature dependence of the blocking is studied and it is shown that several regimes with different blocking strength may exist.Comment: 18 pages, 8 figures, elsart.cls v2.18 include

    Enhanced transmission through arrays of subwavelength holes in gold films coated by a finite dielectric layer

    Get PDF
    Enhanced transmissions through a gold film with arrays of subwavelength holes are theoretically studied, employing the rigid full vectorial three dimensional finite difference time domain method. Influence of air-holes shape to the transmission is firstly studied, which confirms two different resonances attributing to the enhanced transmission: the localized waveguide resonance and periodic surface plasmon resonances. For the film coated with dielectric layers, calculated results show that in the wavelength region of interest the localized waveguide resonant mode attributes to sensing rather than the periodic gold-glass surface plasmon mode. Although the detected peak is fairly broad and the shift is not too pronounced, we emphasize the contribution for sensing from the localized waveguide resonant mode, which may opens up new ways to design surface plasmon based sensors.Comment: 11 pages including 4 figures. Accepted for JEOS:R

    Performance and durability of solid oxide electrolysis cells for syngas production

    Get PDF
    Performance and durability of Ni/YSZ based solid oxide electrolysis cells (SOECs) for co-electrolysis of H2O and CO2 at high current density were investigated. The cells consist of a Ni/YSZ support, a Ni/YSZ fuel electrode, a YSZ electrolyte, and a LSM-YSZ oxygen electrode. The cell durability was examined at 800°C and electrolysis current density of -1 or -1.5 A/cm2 with 60% reactant (H2O+CO2) utilization. The cell voltage degradation showed a strong dependence on the electrolysis current density, with an overall cell voltage degradation rate of 0.24 mV/h at -1 A/cm2 and of 0.82 mV/h at -1.5 A/cm2. Electrochemical characterization of the cells showed that the degradation was mainly related to the LSM/YSZ electrode when operated at -1 A/cm2, whereas at increased current density (-1.5 A/cm2), both the Ni/YSZ and LSM/YSZ electrodes showed degradation.</jats:p
    • …
    corecore