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1. Introduction 

One of the challenges in a future 100 % sustainable energy system is how to realise sustainable 

transport. A promising option to this end is production of synthetic fuels using electrolysis. Solid 

oxide electrolysis cells (SOEC) are still at the research and development stage whereas alkaline 

and PEM electrolysers are today commercially available. However, with the current price and scale 

of these technologies they have not up to now found widespread use in the energy system. It is 

anticipated that the first commercial high temperature electrolysis plants will be available around 

2020-2025. The motivation for creating this report is the need for fossil free fuels for the transport 

sector. Electrolysers are one of the key components for the production of these fuels. Therefore, 

this report was developed to create an overview of recommendations regarding achievable 

efficiencies and projected costs for the three electrolysis technologies, a more clear understanding 

of the characteristics of these technologies and what data should be used in feasibility studies and 

energy systems scenarios for the future, where a larger role and deployment of electrolysers is 

expected.  

Two sets of data are presented for high temperature SOEC, one representing the theoretical 

maximum efficiency with ideal conditions and the other with 10% losses included, as an 

approximation for including balance of plant consumption and losses. The second set of data 

which includes losses is recommended where analysis is carried out for assessing the integration 

of electrolysers in energy systems in combination with other power plants. Values on the efficiency 

of the cells are presented for both the lower and higher heating value (LHV, HHV). Data is 

presented for steam-, CO2-, and co-electrolysis. 

The available data for alkali and PEM electrolysers presented here is based on the literature and 

shows the current status and future predictions of the technology. The results for all technologies 

are listed in Tables 2 - 5. The main focus in this report is SOECs because these are expected to 

have the highest efficiency and lowest costs in the future, although they are still not commercially 

available.  

It should be noted that future cost and performance estimates are encompassed with some 

uncertainty due to the long term predictions.   

2. Definitions 

Throughout this report some common terminology is used to asses these technologies.  

ELECTROLYSER EFFICIENCY represents the total energy to fuel efficiency of the electrolysis system. 

In the case of high temperature steam and co-electrolysis represents the efficiency of the system 

excluding the availability of surplus heat for preheating and vaporising the water, i.e. all the heat 

needed to run the electrolysis process (to produce steam) is generated by input electricity. 

THE LOWER HEATING VALUE (LHV) accounts for the energy content of a compound assuming that 

the latent heat of condensation of steam is not recovered. It is useful when comparing fuels where 

condensation of the combustion products is impractical. For instance, if the flue gas contains 

sulphur then condensation would cause corrosion in the system or if the heat at a temperature 

below 150°C cannot be put to use. 
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THE HIGHER HEATING VALUE (HHV) accounts for the energy content of a compound (the energy 

released on combusting the compound) plus the latent heat of condensing steam produced in the 

combustion process. It is used in cases where condensation of the reaction products is practical. 

Difference between HHV and LHV depends on the chemical composition of the fuel and in the 

case of hydrogen, the difference is more significant than with other types of fuels due to the steam 

condensation. LHV is chosen here as it is customarily used in energy system analyses and thus it 

is recommended because all the technologies in the energy sector are typically compared using 

the LHV.  

3. High temperature steam electrolysis - SOEC 

3.1. Theoretical maximum and potential future operation 

The advantage of the electrolysers is the possibility to choose the operation efficiency based on 

their polarization curves. The efficiency of electrolysers is inversely proportional to the cell voltage 

while the current density is inversely proportional to their capital costs [1]. Therefore the SOECs 

have an advantage over alkaline and PEM because they can achieve a higher efficiency and lower 

capital costs in a wider range of current densities and cell voltages. However to reach the 

thermoneutral operation for water electrolysis, the cell voltage needs to be above 1.3 V. 

An energy balance for SOEC operating under ideal theoretical conditions based on the production 

of one mole of hydrogen is illustrated in Fig 1 where one mole of hydrogen represents in terms of 

lower heating value 242 kJ [2]. The input energy is used to heat and evaporate water (44 kJ/mole) 

to “drive” the electrochemical conversion in the cells (242 kJ/mole). Part of the input energy, 

specifically the energy needed to heat and vaporize the water could be supplied as heat from an 

external source.  

Assuming an operating pressure of 40 bars, the inlet heat should be delivered at ~250 °C. 

Assuming that there is no waste heat available in the energy system for heating and vaporising the 

water and assuming no losses in the electrolysis system (ideal operation), the maximum theoretical 

energy efficiency of water electrolysis based on the LHV is 84.6% [3] and 100% based on the HHV 

(see eq.1 and 2). To achieve these efficiencies every kJ of input energy must be converted into 

hydrogen. Ideal operating conditions refer to operation at the thermo neutral voltage (i.e. no excess 

heat is produced). 

 
    

  
             

            
   

   

      
          (eq.1) 

 
    

  
             

            
   

   

      
         (eq.2) 

High temperature electrolyses cannot be expected to operate under ideal operating conditions. For 

energy system analyses it is recommended to include a certain percentage of loss to account for 

losses in the blowers, dryers, inverters and heat losses (see Fig 2). The magnitude of these losses 

will depend on the maturity of auxiliary components and on the size of the system. Here, it is 

suggested to include ~10% losses to the electrolyser system. This is rather optimistic for small 

scale plants but can be considered a realistic estimate for future large scale mature systems (> 

250 KW). In such systems inverter losses could be ~3-5%, surface heat losses 1-3% and losses 
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due to auxiliary heating to minimize heat exchange costs could be ~2%. In the future with 

optimised module designs, the total losses may be lower than 10%. A part of the heat loss may be 

recovered and used e.g. for district heating. As no large scale SOEC plants exist today, there is no 

empirical data on the amount of excess available for district heating purposes. Here, it is 

suggested to count half of the “loss” as retrievable for district heating purposes, i.e. 5%.  

 

Fig 1. Illustration of the energy flows in ideal steam electrolysis (without auxiliary losses) 
representing the energy flow of the produced hydrogen with its lower heating value or higher heating 

value 

If we consider the overall energy input and output of the system it makes no difference whether 

you present energy flows in the energy system in terms of their LHV or HHV. However, the relative 

efficiencies of the various parts of the system appear differently as illustrated in Fig 2. When based 

on the LHV the thermal plants appear “effective” and electrolysis “ineffective” and vice versa if 

based on the HHV. It is important to recognise that normally, LHV is used when performing energy 

system analysis.     
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Electrolyser efficiency 
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included)
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included)

100%

(44 kJ) (242 kJ)
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HHV

½ mol O2
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Fig 2. Illustration of energy flows in a simple system including steam electrolysis and down-stream turbine cycle (including auxiliary losses) 
representing the energy flow of the produced hydrogen with its lower heating value or higher heating value (efficiencies on the power plant 

side represent a large-scale combined cycle gas turbine with steam extraction according to [4]) 
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4. CO2 and co-electrolysis 

4.1. Theoretical maximum and potential future operation 

The ideal theoretical condition for CO2 electrolysis is illustrated in Fig 3. The electricity to fuel 

efficiency is 100 % in the ideal operation conditions because there is not condensation of CO2 and 

CO. 

 

Fig 3. Theoretical optimal operation conditions of high temperature CO2 electrolysis 

Energy flow illustrating high temperature CO2 electrolysis taking in the account 10% of the auxiliary 

losses is presented in Fig 4. Here, losses are assumed to be the same as in the case of steam 

electrolysis 

 

Fig 4. Potential future operation conditions of high temperature CO2 electrolysis with included 10% of 
auxiliary losses  

The H2O and CO2 electrolyses can be combined in a process called co-electrolysis. The product of 

co-electrolysis is synthetic gas (mixture of carbon monoxide and hydrogen) which can be catalyzed 

into various types of synthetic fuel. The co-electrolysis process is rather complicated compared to 

separate steam and CO2 electrolysis because it involves three main reactions that occur 

simultaneously, the electrolysis of CO2 to CO, the electrolysis of water and the reverse water gas 

shift reaction (RWGS).  Even though the main reactions of the process are known, there are 

uncertainties in relation to how this is taking place [5]. 

The electricity and heat consumption needed, can be calculated combining linearly the efficiencies 

and energy streams presented for steam and CO2 electrolysis. Co-electrolysis has been 

documented at DTU Energy Conversion at different range of temperatures up to 850 °C.  

CO2 might need some purification treatment before electrolysis. This can be done via absorption of 

impurities using specific materials that can be regenerated. Hence, the related expenses are 

expected to be small. 

5. Regulation abilities of SOEC 

The cells have fast regulation abilities (from 0% to 100% power in few seconds) if the cell 

temperature is kept at the operating temperature. If the cell is operated below the thermo neutral 

Electrolyser

282 kJ electricity

1 mol CO2

1 mol CO

½ mol O2

Electrolyser

310 kJ electricity

1 mol CO2

1 mol CO

½ mol O2
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voltage, a heat supply is needed to keep the cell temperature at the operation temperature. The 

heat-supply device can be fairly simple and is not considered a significant cost component.  

If the SOEC is cold in idle state, the start-up time could be several hours depending on the design 

and fabrication of cell and stack. However different operation and insulation strategies can be 

applied in the SOEC-plant in order to keep the plant close to operation temperature also when idle. 

6. The costs of future high temperature electrolysers - SOEC 

The cost calculations for technologies that are still at the R&D level are very uncertain and highly 

dependent on the technological development. A development of the SOEC is reliant on financial 

supports for R&D and supports in the initial phase of commercialisation.  

The costs calculated in this report are based on the assumption that the costs goal for SOFC stack 

modules which are factory assembled and at atmospheric pressure are achieved [6]. The prices 

are based on the stack module costs of 175 $/kW (for annual production volume of 250 MW) in 

2007 dollars converted with an inflation factor to 2012 dollars. These are recalculated for SOEC by 

using scaling factor. This factor is the product of the power ratio between typical SOFC and SOEC 

operation (the power density in the SOFC is only 0.25 times that expected in the SOEC) and a 

scaling factor reflects an expected cost reduction with increasing production. The scaling factor of 

SOEC costs is assumed to scale with production volume as SOFC (defined from Figure 4-7 in [7]), 

and projected production volumes are assumed to be 10 MW in 2020, 100 MW in 2030 and >1000 

MW towards 2050. The BoP costs are added-on the SOEC module costs as a percentage of the 

module costs (75% in 2020 and 50% in 2030 and 2050). Transaction costs such as development 

and sales were also added (50% in 2020, 45% in 2030 and 40% in 2050). The calculated costs are 

in this case connected to the highest achievable efficiency of the technology. However, the highest 

achievable efficiency is not necessarily the optimum efficiency from the economy point of view.  

The calculated costs of SOEC are 0.86 M€/MW (MW electricity in) for 2020, 0.28 M€/MW for 2030 

and 0.21 M€/MW in 2050, with an assumed lifetime of 10-20 years. However there are extra costs 

associated when connecting electrolysers to the grid. The electrolysers use significant amounts of 

electricity therefore these expenses need to be included. Large electric boilers between 8-15 MW 

have additional grid costs between €530,000 and €800,000 based on initial Danish experiences. 

Smaller electric boilers are considered to be too expensive due to their high cost of grid connection 

that is between €260,000 and €1,000,000 depending on the location and local connection 

possibilities. Based on that data, the grid connection costs for electrolysis units are estimated to be 

66,000 €/MW the same as for electric boilers. These costs refer to a local grid reinforcement to 

connect electrolysers to the transmission system. These costs do not account for the reinforcement 

of the distribution grid. The lifetime of the grid connection is assumed to be 30 years for the grid 

connection. The total investment costs of grid connected electrolysers are thus estimated to be 

0.93 M€/MW in 2020, 0.35 M€/MW in 2030 and 0.28 M€/MW in 2050.  

The fixed operation and maintenance (O&M) costs are assumed to be approximately 3% of the 

initial investment annually which in 2020 is 25,800 €/MW/year1, in 2030 equals 8,400 €/MW/year 

and in the case of 2050 6,200 €/MW/year. The replacement of stack modules in the lifetime of 

                                                
1
 Unit used according to [4] as a term for the annual fixed operation and maintenance costs 
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these electrolysers is included in the estimated fixed O&M costs. The one third of the investment is 

the electrolyser cells, which has a projected lifetime of 10 years. With such assumptions the total 

annual O&M costs using a socio-economic interest rate of 3% are 0.101 M€/MW in 2020, 0.033 

M€/MW in 2030 and 0.025 M€/MW in 2050. 

These cost estimates are based on future large-scale production of electrolysers for 2020, 2030 

and 2050. For comparison according to [8] the costs for small scale SOEC is 0.71 M€/MW and for 

the large scale 0.28 M€/MW. 

7. System integration with other technologies 

System integration of SOEC can enable maximizing the synergies of different technologies. 

Electrolysers can achieve a theoretical maximum of 100% HHV efficiency which corresponds to 

84.6% LHV. When operating at thermo neutral voltage a 100% HHV efficiency is one that has 

electricity as only energy input. If heat from other technologies is available (e.g. thermal energy), 

part of this electricity input can be replaced: this means that the electric energy required for water 

evaporation can be replaced with excess heat from other processes. This however does not 

increase the efficiency of the electrolysis process, but reduces the electricity consumption. An 

example of the synergy between the potentially heat consuming electrolysis process and an 

exothermic processes, specifically biomass gasification, is outlined in GreenSynFuel report [9]. 

8. Current and future alkaline electrolysers 

Alkaline electrolysis has been available technology for more than 100 year primarily in the 

chemical and metallurgic industry and for the production of fertilizer in the form of ammonia (NH3). 

Therefore it is the most established electrolysis technology commercially available. A drawback of 

alkaline electrolysis is the corrosive character of its electrolyte. The purity level of hydrogen can 

reach 99.9 vol.%. However this requires high purity of water fed to electrolyser. 

Alkaline electrolysers usually operate in temperature ranges between 50 and 80°C and current 

densities of 200 to 400 mA/cm2. Commercially available alkaline electrolysis systems have a 

production capacity in the range between 1-760 Nm3/h which corresponds to an electrical input of 

5 kW to 3.4 MW per module [10]. For a bigger range in plants, alkaline electrolysers can be 

connected in parallel. The largest existing alkaline electrolysis plants are: KIMA fertilizer plant in 

Aswan, Egypt with a capacity of 160 MW and 132 modules, and a 7 module 22 MW plant in Peru 

(pressurized operation) [10]. 

The data listed in Table 2 is based on state-of-the art atmospheric pressure alkaline electrolysers 

and in Table 3 the future possible development of the technology. Some operate at atmospheric 

pressure, and some with pressurised operation between 4 and 30 bar. New pressurized 

electrolysers have exceptional dynamic range and operating flexibility, with the response time in 

the range of milliseconds, allowing production down to 10% of the capacity. With a high outlet 

pressure of 15 bar, electrolysers can have a response time <1second with automatic continuous 

stand-by operation [11]. The advantage of operating at high pressure is that gas output can be 

directly stored as compressed gas. The operating temperature for atmospheric pressure alkaline 

electrolysers goes up to 90°C, but there are experimental concepts that can reach 400°C [12].  
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The efficiency of alkaline electrolysers like SOEC and PEM will depend on the chosen point of 

operation. Alkaline electrolysis plants are today typically operated to maximize economic 

competitiveness of the process in which the produced hydrogen is used and not to maximize 

energy efficiency. To increase energy efficiency voltage has to be lowered close to thermoneutral 

point which would increase costs significantly. The costs can vary from 0.74 up to 3.7 M€/MW 

depending on the production capacity and operating pressure with a reported efficiency range of 

around 38-70% (LHV) [12].  

The cost of alkaline electrolysers is dependent on the size of the plant. The state of the art costs 

are adapted from [10] representing data for plants 3.4 MWe. The costs are estimated to be at least 

1.07 M€/MW with fixed O&M costs of 4% of the initial investment including insurance. The lifetime 

is 20–30 years with assumed major services every 6 years. The costs for future alkaline 

electrolysers are also taken from [10] where the predictions are rather conservative compared to 

the Roadmap for alkaline electrolysis [13]. The Danish Partnership for Hydrogen and Fuel Cells 

have predicted development of alkaline electrolysis from 2011 to 2020 in their roadmap, predicting 

500 times bigger units in 2020 compared to 2011. The unit size varies from 8 Nm3/h in 2011 to 

4000 Nm3/h in 2020, which together with reduction in costs results in low system cost of just 0.36 

M€/MW in 2020 which is competitive with SOEC costs. The costs used in this report [10] do not 

predict development of higher than 1500 Nm3/h before 2020 which is approximately 2.5 times 

lower than the one predicted in [13]. 

There are several companies manufacturing alkaline electrolysers. An overview of manufacturers 

given in Table 1 (adapted from [12]). 

Table 1. Main electrolyser manufacturers and performance data. Adapted from [12] 

Manufacturer 
Configuration of 

technology 
Rated production 

(Nm
3
/h) 

Efficiency 
% (LHV) 

Location 

AccaGen alkaline (bipolar) 1-100 44.7-61.5 Switzerland 

Avalence alkaline (monopolar) 0.4-4.6 55.2-59.9 USA 

Claind alkaline (bipolar) 0.5-30 - Italy 

ELT alkaline (bipolar) 3-330 65.1-69.6 Germany 

ELT alkaline (bipolar) 100-760 64.4-69.6 Germany 

Erredue alkaline (bipolar) 0.6-21.3 49.9-59.1 Italy 

NEL Hydrogen
2
  alkaline (bipolar) 10-500 59.6 Norway 

Hydrogenics alkaline (bipolar) 10-60 55.4-57.6 Canada 

H2 Logic alkaline (bipolar) 0.66-42.62 54.9-59.9 Denmark 

Idroenergy alkaline (bipolar) 0.4-80 39.9-63.6 Italy 

Industrie Haute Technologie alkaline (bipolar) 110-760 64.4-69.6 Switzerland 

Linde alkaline (bipolar) 5-250 
 

Germany 

PIEL, division of ILT Technology alkaline (bipolar) 0.4-16 42.8-59.9 Italy 

Sagim alkaline (monopolar) 1-5 59.9 France 

Teledyne Energy Systems alkaline (bipolar) 2.8-56 - USA 

 

                                                
2
 NEL Hydrogen has announced its bankruptcy in June 2013.  
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9. Current and future PEM electrolysers 

The present commercially available PEM electrolysers are well-suited only for decentralized 

hydrogen production due to their limited capacities. Commercially available PEM electrolysers 

produce high purity hydrogen, typically above 99.99 vol.% with some cases even above 99.999 

vol.% [14]. The solid electrolyte used in PEM allows simple compact design and a high operation 

pressure [15].  

The operation temperature is between 50-80°C which enables a fast start-up. An increase in the 

temperature of operation is not expected due to the character of the membrane; however Danish 

energy agency [4] expects temperature range up to 200°C based on other proton conducting 

materials. Some models reach high pressures of 85 bar [16], with one exception reaching up to 

350 bar [17]. Pressures above 100 bar require thick membranes and special membrane support 

structures enabling the high differential pressures [18]. 

The range of efficiencies reported in the literature for PEM electrolysis vary, 48-65% [12], 55-70% 

[19] and 68-72% [4] (all based on hydrogen LHV). According to [20] the biggest demonstrated 

stack size is 45 kW. Currently available PEMEL systems have a hydrogen production rate that 

varies from 0.06 to 30 Nm³/h, with a maximum electrical power up to 150 kW per module according 

to [10]. This is very low in comparison to alkaline production rates that have already reached 500 

Nm³/h.  

With regard to the lifetime, the membrane represents the critical component of PEM system [21]. 

Even though the lifetime of PEM electrolysis systems were significantly improved in the last 10 

years, it is still limited due to the nature of solid polymer electrolyte membrane, and it is below 

20,000 h [10]. PEM electrolysers are less mature, produced in smaller quantities, and therefore 

more expensive than alkali electrolysers. It is expected that the lifetime will be prolonged up to 

60,000h in the long term predictions [10] which is twice as the prediction of [4]. Even though there 

is no clear relation between operating conditions and degradation processes of the stack, in some 

cases operating conditions can lead to membrane perforation [22].  

The fast dynamic response is seen as a major advantage of the PEM electrolyzer. At the cellular 

level, transients are followed in the electrical power almost instantly. PEM electrolysers have wide 

operational range from 5-100%, which enables dynamic operation with fluctuating intermittent 

sources, and a quick start-up compared to alkaline electrolysers [23].  

According to [10], there are ten existing manufactures that produce PEM electrolysers. However, 

alkaline electrolysers are still dominating the market due to the limited lifetime and low capacities of 

PEM electrolysers.  
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10. Technology data for electrolysers 

 

Table 2. State of the art characteristics of alkaline and PEM electrolysis [10] 

  Alkaline electrolysers PEM electrolysers 

Production of  Hydrogen Hydrogen 

Available from  State of the art State of the art 

Capacity for one unit MW 3.4
3,4

 0.15
5
 

Output Bar <30 <30 

Operating temp. °C 60-80 50-80 

System efficiency  % (LHV) 67  54 

Electricity to heat 

efficiency
6
 

% (LHV) 5 5 

Other input  Ambient air, water Ambient air, water - 

Start-up time Hours 
Depends on the system 

Can have rapid response 

Depends on the system 

Can have rapid response 

Regulation ability    

Fast reserves MW per 15 min. Full capacity  Full capacity 

Regulation speed % per second 0.001 0.001 

Minimum load % of full load 10-20 0-10 

Economy (2012-prices)    

Investment costs
7 

M€/MW 1.07- 2.55 

Fixed O&M costs
8
 % of inv./year 4 4 

Variable O&M cost
9
 €/MWh - - 

Lifetime Years 20-30 10 

 

  

                                                
3
 The largest alkaline electrolyser plant in operation is 160 MW, with average module size of 1.2 MW [10] 

4
 Represents a large alkaline electrolyser with pressure of 30 bar, capacity of 500 Nm

3
/h. The electrolyser is turned off 

only for maintenance purposes and therefore has a load factor of 98%. 
5
 Electrolyser capacity of 30 Nm

3
/h, pressure (25 bar). Electrolyser is used for the on-site generation for a small hydrogen 

fuelling station with a capacity utilization of 75%.  
6
 There are no empirical data on available waste heat that can be utilised for district heating purposes 

7
 Including costs associated with grid connection (66,000 €/MW for large plants). 

8
 Including insurance for alkaline and PEM electrolysers 

9
 No variable costs assumed other than electricity cost which can be identified elsewhere. 
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Table 3. Potential operation characteristics of alkaline and PEM electrolysers 

  Alkaline electrolysers
10

 PEM electrolysers
7
 

Production of  Hydrogen Hydrogen 

Available from  2020-2030 2020-2030 

Capacity for one unit MW >3.4 1 

Output Bar 4-30 <100 

Operating temp. °C 60-90 60-80
11

 (100-200)
12

 

Electricity to fuel 

efficiency  
% (LHV) 50-70  68-72 

Electricity to heat 

efficiency
5
 

% (LHV) 5 5 

Other input  Ambient air, water Ambient air, water - 

Start-up time Hours 0.01 
Depends on the system 

Can have rapid response 

Regulation ability 

Fast reserves MW per 15 min. Full capacity (in 10 min) Full capacity 

Regulation speed % per second 0.004 0.001 

Minimum load % of full load 10-20 0-5 

Economy (2012-prices) 

Investment costs 
13

 M€/MW 0.87
14

 1.27
15

 

Fixed O&M costs 
16

 % of inv./year 4 4 

Variable O&M cost 
17

 €/MWh - - 

Lifetime stack h <90,000 <60,000 

Lifetime system Years 25-30 30 

  

                                                
10

 The alkaline and PEM electrolyser data are modified from [4], and [10]. 
11

 According to [10] – depending on the operating pressure. 
12

 According to [4] – depending on operating pressure. 
13

 Including costs associated with grid connection (66,000 €/MW for large plants). 
14

 Cost for large alkaline pressure electrolyzer with a capacity of 1500 Nm
3
/h. 

15
 Cost for PEM electrolyser with a capacity of 250 Nm

3
/h 

16
 Including insurance for alkaline and PEM electrolysers 

17
 No variable costs assumed other than electricity cost which can be identified elsewhere. 
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Table 4. Potential operation characteristics of high temperature electrolysis 

High temperature electrolysers (SOEC) 

Production of  Hydrogen CO Syngas 

Available from years 2020-2050 2020-2050 2020-2050 

Capacity for one unit MW 0.5-50 0.5-50 0.5-50 

Output Bar 40 40 40 

Operating temp. °C 800 800 800 

Electricity to fuel 

efficiency 
18

 
% (LHV) 76.8 90 81 

Electricity to heat 

efficiency
5
 

% (LHV) 5 5 - 

Other input  Steam
19

 Pure CO2 Steam and pure CO2 

Start-up time
20

 Hours 0.2 0.2 0.2 

Regulation ability 

Fast reserves MW per 15 min. Full capacity Full capacity Full capacity 

Regulation speed % per second 3 down / 0.1 up 3 down / 0.1 up 3 down / 0.1 up 

Minimum load % of full load 3 3 3 

 

Table 5. SOEC cost data for 2020, 2030 and 2050 

SOEC economy (2012 - prices) 

  2020 2030 2050 

Investment costs
21

 M€/MW 0.93 0.35 0.28 

Fixed O&M costs % of inv./year 3 3 3 

Variable O&M cost €/MWh - - - 

Lifetime stack h <90,000 <90,000 <90,000 

Lifetime system Years 10-20 10-20 10-20 
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 Including 10 % of losses for SOEC steam and CO2 electrolysis 
19

 The energy consumption for steam is included in the efficiency. 
20

 The start-up time is several hours if started from cold. 
21

 Average cost for period of 2030-2050, including improvements in grid connection of 66,000 €/MW for large plants. 
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