101 research outputs found

    Residual tumor cells that drive disease relapse after chemotherapy do not have enhanced tumor initiating capacity.

    Get PDF
    Although chemotherapy is used to treat most advanced solid tumors, recurrent disease is still the major cause of cancer-related mortality. Cancer stem cells (CSCs) have been the focus of intense research in recent years because they provide a possible explanation for disease relapse. However, the precise role of CSCs in recurrent disease remains poorly understood and surprisingly little attention has been focused on studying the cells responsible for re-initiating tumor growth within the original host after chemotherapy treatment. We utilized both xenograft and genetically engineered mouse models of non-small cell lung cancer (NSCLC) to characterize the residual tumor cells that survive chemotherapy treatment and go on to cause tumor regrowth, which we refer to as tumor re-initiating cells (TRICs). We set out to determine whether TRICs display characteristics of CSCs, and whether assays used to define CSCs also provide an accurate readout of a cell's ability to cause tumor recurrence. We did not find consistent enrichment of CSC marker positive cells or enhanced tumor initiating potential in TRICs. However, TRICs from all models do appear to be in EMT, a state that has been linked to chemoresistance in numerous types of cancer. Thus, the standard CSC assays may not accurately reflect a cell's ability to drive disease recurrence

    Relationship between Yeast Polyribosomes and Upf Proteins Required for Nonsense mRNA Decay

    Get PDF
    In yeast, the accelerated rate of decay of nonsense mutant mRNAs, called nonsense-mediated mRNA decay, requires three proteins, Upf1p, Upf2p, and Upf3p. Single, double, and triple disruptions of the UPF genes had nearly identical effects on nonsense mRNA accumulation, suggesting that the encoded proteins function in a common pathway. We examined the distribution of epitope-tagged versions of Upf proteins by sucrose density gradient fractionation of soluble lysates and found that all three proteins co-distributed with 80 S ribosomal particles and polyribosomes. Treatment of ly-sates with RNase A caused a coincident collapse of polyribosomes and each Upf protein into frac-tions containing 80 S ribosomal particles, as expected for proteins that are associated with polyribosomes. Mutations in the cysteine-rich (zinc finger) and RNA helicase domains of Upf1p caused loss of function, but the mutant proteins remained polyribosome-associated. Density gradi-ent profiles for Upf1p were unchanged in the absence of Upf3p, and although similar, were modestly shifted to fractions lighter than those containing polyribosomes in the absence of Upf2p. Upf2p shifted toward heavier polyribosome fractions in the absence of Upf1p and into fractions containing 80 S particles and lighter fractions in the absence of Upf3p. Our results suggest that the association of Upf2p with polyribosomes typically found in a wild-type strain depends on the presence and opposing effects of Upf1p and Upf3p

    Relationship between Yeast Polyribosomes and Upf Proteins Required for Nonsense mRNA Decay

    Get PDF
    In yeast, the accelerated rate of decay of nonsense mutant mRNAs, called nonsense-mediated mRNA decay, requires three proteins, Upf1p, Upf2p, and Upf3p. Single, double, and triple disruptions of the UPF genes had nearly identical effects on nonsense mRNA accumulation, suggesting that the encoded proteins function in a common pathway. We examined the distribution of epitope-tagged versions of Upf proteins by sucrose density gradient fractionation of soluble lysates and found that all three proteins co-distributed with 80 S ribosomal particles and polyribosomes. Treatment of ly-sates with RNase A caused a coincident collapse of polyribosomes and each Upf protein into frac-tions containing 80 S ribosomal particles, as expected for proteins that are associated with polyribosomes. Mutations in the cysteine-rich (zinc finger) and RNA helicase domains of Upf1p caused loss of function, but the mutant proteins remained polyribosome-associated. Density gradi-ent profiles for Upf1p were unchanged in the absence of Upf3p, and although similar, were modestly shifted to fractions lighter than those containing polyribosomes in the absence of Upf2p. Upf2p shifted toward heavier polyribosome fractions in the absence of Upf1p and into fractions containing 80 S particles and lighter fractions in the absence of Upf3p. Our results suggest that the association of Upf2p with polyribosomes typically found in a wild-type strain depends on the presence and opposing effects of Upf1p and Upf3p

    FGF19 Regulates Cell Proliferation, Glucose and Bile Acid Metabolism via FGFR4-Dependent and Independent Pathways

    Get PDF
    Fibroblast growth factor 19 (FGF19) is a hormone-like protein that regulates carbohydrate, lipid and bile acid metabolism. At supra-physiological doses, FGF19 also increases hepatocyte proliferation and induces hepatocellular carcinogenesis in mice. Much of FGF19 activity is attributed to the activation of the liver enriched FGF Receptor 4 (FGFR4), although FGF19 can activate other FGFRs in vitro in the presence of the coreceptor βKlotho (KLB). In this report, we investigate the role of FGFR4 in mediating FGF19 activity by using Fgfr4 deficient mice as well as a variant of FGF19 protein (FGF19v) which is specifically impaired in activating FGFR4. Our results demonstrate that FGFR4 activation mediates the induction of hepatocyte proliferation and the suppression of bile acid biosynthesis by FGF19, but is not essential for FGF19 to improve glucose and lipid metabolism in high fat diet fed mice as well as in leptin-deficient ob/ob mice. Thus, FGF19 acts through multiple receptor pathways to elicit pleiotropic effects in regulating nutrient metabolism and cell proliferation

    Mapping In Vivo Tumor Oxygenation within Viable Tumor by 19F-MRI and Multispectral Analysis

    Get PDF
    AbstractQuantifying oxygenation in viable tumor remains a major obstacle toward a better understanding of the tumor microenvironment and improving treatment strategies. Current techniques are often complicated by tumor heterogeneity. Herein, a novel in vivo approach that combines 19F magnetic resonance imaging (19F-MRI)R1 mapping with diffusionbased multispectral (MS) analysis is introduced. This approach restricts the partial pressure of oxygen (pO2) measurements to viable tumor, the tissue of therapeutic interest. The technique exhibited sufficient sensitivity to detect a breathing gas challenge in a xenograft tumor model, and the hypoxic region measured by MS 19F-MRI was strongly correlated with histologic estimates of hypoxia. This approach was then applied to address the effects of antivascular agents on tumor oxygenation, which is a research question that is still under debate. The technique was used to monitor longitudinal pO2 changes in response to an antibody to vascular endothelial growth factor (B20.4.1.1) and a selective dual phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor (GDC-0980). GDC-0980 reduced viable tumor pO2 during a 3-day treatment period, and a significant reduction was also produced by B20.4.1.1. Overall, this method provides an unprecedented view of viable tumor pO2 and contributes to a greater understanding of the effects of antivascular therapies on the tumor's microenvironment

    Negative regulation of autoimmune demyelination by the inhibitory receptor CLM-1

    Get PDF
    Multiple sclerosis and its preclinical model, experimental autoimmune encephalomyelitis, are marked by perivascular inflammation and demyelination. Myeloid cells, derived from circulating progenitors, are a prominent component of the inflammatory infiltrate and are believed to directly contribute to demyelination and axonal damage. How the cytotoxic activity of these myeloid cells is regulated is poorly understood. We identify CMRF-35–like molecule-1 (CLM-1) as a negative regulator of autoimmune demyelination. CLM-1 is expressed on inflammatory myeloid cells present in demyelinating areas of the spinal cord after immunization of mice with MOG35-55 (myelin oligodendrocyte glycoprotein) peptide. Absence of CLM-1 resulted in significantly increased nitric oxide and proinflammatory cytokine production, along with increased demyelination and worsened clinical scores, whereas T cell responses in the periphery or in the spinal cord remained unaffected. This study thus identifies CLM-1 as a negative regulator of myeloid effector cells in autoimmune demyelination

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Residual tumor cells that drive disease relapse after chemotherapy do not have enhanced tumor initiating capacity.

    Get PDF
    Although chemotherapy is used to treat most advanced solid tumors, recurrent disease is still the major cause of cancer-related mortality. Cancer stem cells (CSCs) have been the focus of intense research in recent years because they provide a possible explanation for disease relapse. However, the precise role of CSCs in recurrent disease remains poorly understood and surprisingly little attention has been focused on studying the cells responsible for re-initiating tumor growth within the original host after chemotherapy treatment. We utilized both xenograft and genetically engineered mouse models of non-small cell lung cancer (NSCLC) to characterize the residual tumor cells that survive chemotherapy treatment and go on to cause tumor regrowth, which we refer to as tumor re-initiating cells (TRICs). We set out to determine whether TRICs display characteristics of CSCs, and whether assays used to define CSCs also provide an accurate readout of a cell's ability to cause tumor recurrence. We did not find consistent enrichment of CSC marker positive cells or enhanced tumor initiating potential in TRICs. However, TRICs from all models do appear to be in EMT, a state that has been linked to chemoresistance in numerous types of cancer. Thus, the standard CSC assays may not accurately reflect a cell's ability to drive disease recurrence
    corecore