3 research outputs found

    The effect of corrosion morphology on the fatigue initiation and small crack growth behavior of AA7050-T7451

    Get PDF
    Complex airframe structures often require the use of stainless steel fasteners to assemble/join aluminum substructures. A galvanic couple is created when surface coatings/sealants are breached enabling ingress of an electrolyte; this leads to corrosion damage at these inherently high stress joints. Recent US Air Force studies have demonstrated that corrosion nucleated fatigue damage represents roughly 80% of airframe fatigue damage initiation sites [1]. Despite the critical importance of this failure mode the interaction of the mechanical and electrochemical interactions for a realistic galvanic couple configuration are poorly understood. This talk will report on a collaborative effort that aims to quantify the local galvanic environments, quantitatively characterize the corrosion morphology associated with such environments, and evaluate how such morphologies influence the fatigue behavior of a modern aerospace aluminum alloy. The primary focus will be on quantitatively evaluating the macro-features, micro-features, and microstructural interactions that govern the crack formation behavior and how the relative influence of each varies with different corrosion morphologies produced using electrochemical conditions pertinent to an in-service galvanic couple. Leveraging collaborator inputs from experimental and computation analysis of the electrochemistry of a representative galvanic couple, three corrosion morphologies are considered: discrete pitting (small and large scale), a broadly corroded surface with surface recession and intergranular corrosion (IGC). Each damage morphology is induced on the SL surface of the AA7050-T7451 fatigue samples. Optical microscopy, white light interferometry, and x-ray computed tomography (XCT) are used to characterize the features of the corroded specimens. XCT is also used to identify the location of underlying constituent particles. Corroded specimens are fatigue loaded (σmax of 200 MPa, R of 0.5 and f of 20 Hz) along the L-direction in a high humidity (RH\u3e90%) that is maintained inside a plexiglass chamber. A programmed fatigue loading sequence is used mark the crack front intermittently on the fracture surface of the specimens; these fatigue-sequence induced marker bands are analyzed using the scanning electron microscope to quantify crack formation location and life ((Ni) to ≈10 μm) and crack growth rates (da/dN). Once fractography is complete the fracture surface is polished (roughly 15 μm deep) and electron back-scatter diffraction analysis is performed to enable characterization of the microstructure proximate to the crack formation site and how it intersects the growing small crack. Overall fatigue life results show a substantial and similar reduction in fatigue life due to each of the corrosion morphologies; markerband analysis demonstrates that this strong reduction is primarily due to a vast decrease in the crack formation life. Similar small crack growth rates are observed proximate to each of the corrosion features. Analysis of the macro-features of the corrosion morphology show no clear trend between crack formation sites and the damage depth, width, 3D volume, density, or proximity to surrounding damage. Furthermore the similarity in the crack formation life between different morphologies suggests that the micro-features associated with each damage type results in a similarly deleterious local condition for crack formation. The proximity of local constituent particles and the local grain orientations are evaluated to determine if there is commonality between the crack formation location and a consistent microstructure feature(s). The results and conclusion of this effort will quantitatively characterize the crack formation behavior of a relevant aerospace Al alloy in realistic conditions and leverage this data to further the mechanistic understanding of the factors governing the corrosion to fatigue crack transition. This understanding it critical to inform engineering scale prognosis strategies and provide guidance on the critical criteria for designing corrosion mitigation strategies in the context fatigue damage. References: [1] G.A. Shoales, S.A. Fawaz, M.R. Walters, in: M. Bos (Ed.) ICAF 2009 - Bridging the Gap Between Theory and Operational Practice, Springer, Rotterdam, The Netherlands, 2009, pp. 187-207

    Understanding corrosion features and alloy microstructural effects on fatigue initiation of corroded AA7050-T7451 using data science

    Get PDF
    Aluminum alloy 7050-T451 is generally used in aerospace structure due to its high strength-to-weight ratio and high toughness. Local galvanic coupling set up by wicking of electrolyte in between the stainless steel fastener used in the aircrafts and the aluminum substructure promote corrosion of AA7050-T7451. Fatigue crack initiation tend to occur on discontinuities in the aluminum alloy such as the corrosion damage created by the galvanic coupling. Previous study indicate that the individual metrics analyzed for the macro-scale (\u3e250 μm) corrosion features such as pit depth, pit density, pit volume, area of the pit mouth, do not fully correlate to the location of the fatigue crack initiation [1]. The objective of this study is to verify if there is an interaction effect on the metrics analyzed using the macro-scale corrosion damage features using data science techniques. Another objective of this study is to determine if the micro-scale (\u3c250 μm) corrosion features and the alloy microstructure play an important role in the fatigue initiation mechanism of AA7050-T7451. In order to understand the mechanism governing the fatigue crack formation, corrosion damage mimicking the galvanic coupling effect of AA7050-T7451 and SS316 are artificially created on the surface of AA7050-T7451. A small area on the LS surface of the fatigue specimens are exposed to different environmental conditions to create four different corrosion morphologies, namely, shallow and deep discrete pits, fissures and general corrosion with surface recession. These corrosion morphologies are characterized using the optical microscope, white light interferometer, scanning electron microscope and X-ray computed tomography. The specimens are subjected to fatigue loading using a special loading protocol that creates marker bands on the fracture surface. The specimens are cyclically loaded along the L-direction with σmax of 200 MPa, R ratio of 0.5 at a frequency of 20 Hz. The fatigue testing is done at 23°C and a controlled moist environment with \u3e90% relative humidity during the entire test. After fatigue testing, the fractographs of the specimens are obtained using the SEM. The marker bands from these fractographs are analyzed to calculate the crack growth rate and the fatigue initiation life to create a 10 μm crack from the initiation point are estimated. Data science approaches are employed to analyze the interaction effect of the individual metrics reported in the macro-scale corrosion feature analysis. Random forest and logistic regression modeling show that there is minimal significance between the macro-scale corrosion feature predictor variables and the fatigue crack initiation points. Even though data science indicate that these factors have less significance, these factors should not be neglected. The micro-scale corrosion features and the distribution of secondary phase particles as well as the grain character are individually analyzed and correlated to the location of the fatigue crack initiation for all the corrosion damage morphologies. Results show that these individual metrics does not fully dictate the location of the fatigue crack initiation. Future work of this study involves the use of data science techniques to understand the relationship between the micro-scale corrosion features, their possible interaction with the alloy microstructure, and the fatigue crack formation. This study will provide understanding on what governs the fatigue crack initiation and inform current micro-mechanical models to incorporate effects of pertinent parameters in predicting remaining life of corroded specimens. Reference: [1] Co NEC, Burns JT. Effects of macro-scale corrosion damage feature on fatigue crack initiation and fatigue behavior. Int J Fatigue 2017;103:234–47. doi:10.1016/j.ijfatigue.2017.05.028
    corecore