20 research outputs found

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Comparison of Vaccine Strategies Using Recombinant env–gag–pol MVA with or without an Oligomeric Env Protein Boost in the SHIV Rhesus Macaque Model

    Get PDF
    Rhesus macaques were immunized with a replication-deficient vaccinia virus (MVA) expressing human immunodeficiency virus type 1 89.6 envelope (env) and SIV gagpol (MVA/SHIV89.6) with or without a protein boost consisting of soluble 89.6 env (gp140). Immunization with MVA/SHIV89.6 alone elicited binding antibodies in all animals and neutralizing antibodies in 5 of 15 animals. Both types of antibodies were enhanced by protein boosting. In addition, CD8 cells exhibiting CM9 tetramer binding were detected in the subset of animals that were Mamu-A*01 positive. Animals were challenged intravenously with either SHIV-89.6 (Study 1) or the more pathogenic derivative SHIV-89.6P (Study 2). In Study 1, all control and vaccinated animals except one became infected. However, the levels of viremia were as follows: controls > rMVA alone > rMVA + protein. The differences were statistically significant between immunized and control groups but not between the two immunized groups. In Study 2, all animals became infected; however, the vaccinated group exhibited a 5-fold reduction in peak viremia and a 10-fold reduction in the postacute phase viremia in comparison to the controls. All of the controls required euthanasia by 10 months after challenge. A relationship between vaccine-induced antibody titers and reduction in virus burden was observed in both studies. Thus, immunization with MVA/SHIV89.6 alone or with a protein boost stimulated both arms of the immune system and resulted in significant control of viremia and delayed progression to disease after challenge with SHIV-89.6P
    corecore