187 research outputs found
Feasibility of a chemical poison loop system
Chemical poison loop system for reactivity control of tungsten water moderated rocket reacto
On the possibility of measuring relativistic gravitational effects with a LAGEOS-LAGEOS II-OPTIS-mission
In this paper we wish to preliminary investigate if it would be possible to
use the orbital data from the proposed OPTIS mission together with those from
the existing geodetic passive SLR LAGEOS and LAGEOS II satellites in order to
perform precise measurements of some general relativistic
gravitoelectromagnetic effects, with particular emphasis on the Lense-Thirring
effect.Comment: Abridged version. 16 pages, no figures, 1 table. First results from
the GGM01C Earth gravity model. GRACE data include
On the Possibility of Measuring the Gravitomagnetic Clock Effect in an Earth Space-Based Experiment
In this paper the effect of the post-Newtonian gravitomagnetic force on the
mean longitudes of a pair of counter-rotating Earth artificial satellites
following almost identical circular equatorial orbits is investigated. The
possibility of measuring it is examined. The observable is the difference of
the times required to in passing from 0 to 2 for both senses of
motion. Such gravitomagnetic time shift, which is independent of the orbital
parameters of the satellites, amounts to 5 s for Earth; it is
cumulative and should be measured after a sufficiently high number of
revolutions. The major limiting factors are the unavoidable imperfect
cancellation of the Keplerian periods, which yields a constraint of 10
cm in knowing the difference between the semimajor axes of the satellites,
and the difference of the inclinations of the orbital planes which, for
, should be less than . A pair of spacecrafts
endowed with a sophisticated intersatellite tracking apparatus and drag-free
control down to 10 cm s Hz level might allow to meet
the stringent requirements posed by such a mission.Comment: LaTex2e, 22 pages, no tables, 1 figure, 38 references. Final version
accepted for publication in Classical and Quantum Gravit
The use of GPS buoys in the determination of oceanic variables
GPS observables taken from light-weight GPS buoys more than 80 km from the GPS reference stations have been analysed using different noise models in the parameter estimation process. The time series solution of the GPS buoy positioning have been used to extract values of oceanic variables (sea level, tides and waves) and tropospheric information. These variables are compared with data from models and with measurements from a meteorological buoy. Copy right© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences.Peer reviewe
Sequencing of Pooled DNA Samples (Pool-Seq) Uncovers Complex Dynamics of Transposable Element Insertions in Drosophila melanogaster
Transposable elements (TEs) are mobile genetic elements that parasitize genomes by semi-autonomously increasing their own copy number within the host genome. While TEs are important for genome evolution, appropriate methods for performing unbiased genome-wide surveys of TE variation in natural populations have been lacking. Here, we describe a novel and cost-effective approach for estimating population frequencies of TE insertions using paired-end Illumina reads from a pooled population sample. Importantly, the method treats insertions present in and absent from the reference genome identically, allowing unbiased TE population frequency estimates. We apply this method to data from a natural Drosophila melanogaster population from Portugal. Consistent with previous reports, we show that low recombining genomic regions harbor more TE insertions and maintain insertions at higher frequencies than do high recombining regions. We conservatively estimate that there are almost twice as many “novel” TE insertion sites as sites known from the reference sequence in our population sample (6,824 novel versus 3,639 reference sites, with on average a 31-fold coverage per insertion site). Different families of transposable elements show large differences in their insertion densities and population frequencies. Our analyses suggest that the history of TE activity significantly contributes to this pattern, with recently active families segregating at lower frequencies than those active in the more distant past. Finally, using our high-resolution TE abundance measurements, we identified 13 candidate positively selected TE insertions based on their high population frequencies and on low Tajima's D values in their neighborhoods
Ancestral Inference and the Study of Codon Bias Evolution: Implications for Molecular Evolutionary Analyses of the Drosophila melanogaster Subgroup
Reliable inference of ancestral sequences can be critical to identifying both patterns and causes of molecular evolution. Robustness of ancestral inference is often assumed among closely related species, but tests of this assumption have been limited. Here, we examine the performance of inference methods for data simulated under scenarios of codon bias evolution within the Drosophila melanogaster subgroup. Genome sequence data for multiple, closely related species within this subgroup make it an important system for studying molecular evolutionary genetics. The effects of asymmetric and lineage-specific substitution rates (i.e., varying levels of codon usage bias and departures from equilibrium) on the reliability of ancestral codon usage was investigated. Maximum parsimony inference, which has been widely employed in analyses of Drosophila codon bias evolution, was compared to an approach that attempts to account for uncertainty in ancestral inference by weighting ancestral reconstructions by their posterior probabilities. The latter approach employs maximum likelihood estimation of rate and base composition parameters. For equilibrium and most non-equilibrium scenarios that were investigated, the probabilistic method appears to generate reliable ancestral codon bias inferences for molecular evolutionary studies within the D. melanogaster subgroup. These reconstructions are more reliable than parsimony inference, especially when codon usage is strongly skewed. However, inference biases are considerable for both methods under particular departures from stationarity (i.e., when adaptive evolution is prevalent). Reliability of inference can be sensitive to branch lengths, asymmetry in substitution rates, and the locations and nature of lineage-specific processes within a gene tree. Inference reliability, even among closely related species, can be strongly affected by (potentially unknown) patterns of molecular evolution in lineages ancestral to those of interest
A Model of Oxidative Stress Management: Moderation of Carbohydrate Metabolizing Enzymes in SOD1-Null Drosophila melanogaster
The response to oxidative stress involves numerous genes and mutations in these genes often manifest in pleiotropic ways that presumably reflect perturbations in ROS-mediated physiology. The Drosophila melanogaster SOD1-null allele (cSODn108) is proposed to result in oxidative stress by preventing superoxide breakdown. In SOD1-null flies, oxidative stress management is thought to be reliant on the glutathione-dependent antioxidants that utilize NADPH to cycle between reduced and oxidized form. Previous studies suggest that SOD1-null Drosophila rely on lipid catabolism for energy rather than carbohydrate metabolism. We tested these connections by comparing the activity of carbohydrate metabolizing enzymes, lipid and triglyceride concentration, and steady state NADPH:NADP+ in SOD1-null and control transgenic rescue flies. We find a negative shift in the activity of carbohydrate metabolizing enzymes in SOD1-nulls and the NADP+-reducing enzymes were found to have significantly lower activity than the other enzymes assayed. Little evidence for the catabolism of lipids as preferential energy source was found, as the concentration of lipids and triglycerides were not significantly lower in SOD1-nulls compared with controls. Using a starvation assay to impact lipids and triglycerides, we found that lipids were indeed depleted in both genotypes when under starvation stress, suggesting that oxidative damage was not preventing the catabolism of lipids in SOD1-null flies. Remarkably, SOD1-nulls were also found to be relatively resistant to starvation. Age profiles of enzyme activity, triglyceride and lipid concentration indicates that the trends observed are consistent over the average lifespan of the SOD1-nulls. Based on our results, we propose a model of physiological response in which organisms under oxidative stress limit the production of ROS through the down-regulation of carbohydrate metabolism in order to moderate the products exiting the electron transport chain
Confinement increases the lifetimes of hydroxyapatite precursors
The mineral component of bone is a carbonated, nonstoichiometric hydroxyapatite (calcium phosphate) that forms in nanometer confinement within collagen fibrils, the principal organic constituent of bone. We here employ a model system to study the effects of confinement on hydroxyapatite precipitation from solution under physiological conditions. In common with earlier studies of calcium carbonate and calcium sulfate precipitation, we find that confinement significantly prolongs the lifetime of metastable phases, here amorphous calcium phosphate (ACP) and octacalcium phosphate (OCP). The effect occurs at surprisingly large separations of up to 1 μm, and at 0.2 μm the lifetime of ACP is extended by at least an order of magnitude. The soluble additive poly(aspartic acid), which in bulk stabilizes ACP, appears to act synergistically with confinement to give a greatly enhanced stability of ACP. The reason for the extended lifetime appears to be different from that found with CaCO3 and CaSO4, and underscores both the variety of mechanisms whereby confinement affects the growth and transformation of solid phases, and the necessity to study a wide range of crystalline systems to build a full understanding of confinement effects. We suggest that in the case of ACP and OCP the extended lifetime of these metastable phases is chiefly due to a slower transport of ions between a dissolving metastable phase, and the more stable, growing phase. These results highlight the potential importance of confinement on biomineralization processes
- …