27 research outputs found

    Assessing Dysferlinopathy Patients Over Three Years With a New Motor Scale

    Get PDF
    The Jain COS Consortium.[Objective] Dysferlinopathy is a muscular dystrophy with a highly variable clinical presentation and currently unpredictable progression. This variability and unpredictability presents difficulties for prognostication and clinical trial design. The Jain Clinical Outcomes Study of Dysferlinopathy aims to establish the validity of the North Star Assessment for Limb Girdle Type Muscular Dystrophies (NSAD) scale and identify factors that influence the rate of disease progression using NSAD.[Methods] We collected a longitudinal series of functional assessments from 187 patients with dysferlinopathy over 3 years. Rasch analysis was used to develop the NSAD, a motor performance scale suitable for ambulant and nonambulant patients. Generalized estimating equations were used to evaluate the impact of patient factors on outcome trajectories.[Results] The NSAD detected significant change in clinical progression over 1 year. The steepest functional decline occurred during the first 10 years after symptom onset, with more rapid decline noted in patients who developed symptoms at a younger age (p = 0.04). The most rapidly deteriorating group over the study was patients 3 to 8 years post symptom onset at baseline.[Interpretation] The NSAD is the first validated limb girdle specific scale of motor performance, suitable for use in clinical practice and clinical trials. Longitudinal analysis showed it may be possible to identify patient factors associated with greater functional decline both across the disease course and in the short-term for clinical trial preparation. Through further work and validation in this cohort, we anticipate that a disease model incorporating functional performance will allow for more accurate prognosis for patients with dysferlinopathy. ANN NEUROL 2021;89:967–978The estimated US $4 million needed to fund this study was provided by the Jain Foundation. (www.jain-foundation.org) The Jain COS consortium would like to thank the study participants and their families for their invaluable contribution. The John Walton Centre Muscular Dystrophy Research Centre is part of the MRC Centre for Neuromuscular Diseases (Grant number MR/K000608/1).Peer reviewe

    Assessing dysferlinopathy patients over three years with a new motor scale

    Get PDF
    OBJECTIVE: Dysferlinopathy is a muscular dystrophy with a highly variable clinical presentation and currently unpredictable progression. This variability and unpredictability presents difficulties for prognostication and clinical trial design. The Jain Clinical Outcomes Study of Dysferlinopathy aims to establish the validity of the North Star Assessment for Limb Girdle Type Muscular Dystrophies (NSAD) scale and identify factors that influence the rate of disease progression using NSAD. METHODS: We collected a longitudinal series of functional assessments from 187 dysferlinopathy patients over three years. Rasch analysis was used to develop the NSAD, a motor performance scale suitable for ambulant and non-ambulant patients. Generalized estimating equations were used to evaluate the impact of patient factors on outcome trajectories. RESULTS: The NSAD detected significant change in clinical progression over 1 year. The steepest functional decline occurred during the first 10 years after symptom onset, with more rapid decline noted in patients who developed symptoms at a younger age (p = 0.04). The most rapidly deteriorating group over the study was patients 3-8 years post symptom onset at baseline. INTERPRETATION: The NSAD is the first validated limb girdle specific scale of motor performance, suitable for use in clinics practice and clinical trials. Longitudinal analysis showed it may be possible to identify patient factors associated with greater functional decline both across the disease course and in the short-term for clinical trial preparation. Through further work and validation in this cohort, we anticipate that a disease model incorporating functional performance will allow for more accurate prognosis for patients with dysferlinopathy

    Sex differences in the traumatic stress response: the role of adult gonadal hormones

    No full text
    Abstract Background Our previous study revealed that adult female rats respond differently to trauma than adult males, recapitulating sex differences in symptoms of post-traumatic stress disorder (PTSD) exhibited by women and men. Here, we asked two questions: does the female phenotype depend on (1) social housing condition and/or (2) circulating gonadal hormones? Methods For the first study, the effects of single prolonged stress (SPS) were compared for females singly or pair-housed. For the second study, adult male and female rats were gonadectomized or sham-gonadectomized 2 weeks prior to exposure to SPS, with half the gonadectomized rats given testosterone. In addition to the typical measures of the trauma response in rats, acoustic startle response (ASR), and the dexamethasone suppression test (DST), we also used two other measures typically used to assess depressive-like responses, social interaction and sucrose preference. Glucocorticoid receptor (GR) expression in the hypothalamus was also examined. Results We now report that the distinct trauma response of female rats is not influenced by social housing condition. Moreover, sex differences in the response to SPS based on ASR and DST, replicated in the current study, are independent of adult gonadal hormones. Regardless of hormonal status, traumatized males show a hyper-responsive phenotype whereas traumatized females do not. Moreover, testosterone treatment in adulthood did not masculinize the response to trauma in females. Notably, both sucrose preference and social interaction tests revealed an effect of trauma in females but not in males, with the effects of SPS on sucrose preference dependent on ovarian hormones. Effects of SPS on GR expression in the hypothalamus also depended on gonadal hormones in females. Conclusions We propose that the trauma response for female rats is depressive in nature, recapitulating the female bias in PTSD for internalizing symptoms and major depression in contrast to the externalizing symptoms of males. Presumed core markers of PTSD (enhanced ASR and negative feedback control of corticosterone) are apparently relevant only to males and are independent of adult gonadal hormones. Such sex differences in trauma responding are likely determined earlier in life. We conclude that males and females show fundamentally different responses to trauma that do not simply reflect differences in resilience

    Sex differences in the traumatic stress response: PTSD symptoms in women recapitulated in female rats

    No full text
    Abstract Background Post-traumatic stress disorder (PTSD) affects men and women differently. Not only are women twice as likely as men to develop PTSD, they experience different symptoms and comorbidities associated with PTSD. Yet the dearth of preclinical research on females leaves a notable gap in understanding the underlying neuropathology of this sex difference. Methods Using two standard measures of PTSD-like responses in rats, the acoustic startle response (ASR) and dexamethasone suppression test (DST), we tested the effects of traumatic stress in adult male and female rats using two rodent models of PTSD, single prolonged stress and predator exposure. We then examined the neural correlates underlying these responses with cFos and glucocorticoid receptor immunohistochemistry in brain regions implicated in the traumatic stress response. Results We now report that adult male and female rats across two models of PTSD show consistent sex-specific responses that recapitulate fundamental differences of PTSD in men and women. Trauma-exposed males showed the well-established hyper-responsive phenotype of enhanced ASR and exaggerated negative feedback control of the hypothalamic-pituitary-adrenal axis, while the same traumatic event had little effect on these same measures in females. Dramatic sex differences in how trauma affected cFos and glucocorticoid receptor expression in the brain lend further support to the idea that the trauma response of male and female rats is fundamentally different. Conclusions Two standard measures, ASR and DST, might suggest that females are resilient to the effects of traumatic stress, but other measures make it clear that females are not resilient, but simply respond differently to trauma. The next important question to answer is why. We conclude that males and females show fundamentally different responses to trauma that do not simply reflect differences in resilience. The divergent effects of trauma in the brains of males and females begin to shed light on the neurobiological underpinnings of these sex differences, paving the way for improved diagnostics and therapeutics that effectively treat both men and women

    Data from: Assessment of disease progression in dysferlinopathy – a one year cohort study

    No full text
    Objective: To assess the ability of functional measures to detect disease progression in dysferlinopathy over 6 months and 1 year. Methods: 193 patients with dysferlinopathy were recruited to the Jain Foundation’s International Clinical Outcome Study for Dysferlinopathy. Baseline, 6 months and 1 year assessments included: adapted North Star Assessment (a-NSAA), Motor Function Measure (MFM-20), timed function tests, 6 minute walk test (6MWT), Brooke Scale, Jebsen Test, manual muscle testing (MMT) and hand-held dynamometry (HHD). Patients also completed the ACTIVLIM questionnaire. Change in each measure over 6 months and 1 year was calculated and compared between disease severity (ambulant (mild, moderate or severe based on a-NSAA score) or non-ambulant (unable to complete a 10m walk)) and clinical diagnosis. Results: The functional a-NSAA test was the most sensitive to deterioration for ambulant patients overall. The a-NSAA score was the most sensitive test in the mild and moderate group while 6MWT was most sensitive in the severe group. The 10m walk test was the only test showing significant change across all ambulant severity groups. In non-ambulant patients, the MFM domain 3, wrist flexion strength and pinch grip were most sensitive. Progression rates did not differ by clinical diagnosis. Power calculations determined that 46 moderately affected patients are required to determine clinical effectiveness for a hypothetical 1 year clinical trial based on the a-NSAA as a clinical endpoint. Conclusion: Certain functional outcome measures can detect changes over 6 months and one year in dysferlinopathy and potentially be useful in monitoring progression in clinical trials

    A Nonhuman Primate Model of Lung Regeneration: Detergent-Mediated Decellularization and Initial in vitro Recellularization with Mesenchymal Stem Cells

    No full text
    Currently, patients with end-stage lung disease are limited to lung transplantation as their only treatment option. Unfortunately, the lungs available for transplantation are few. Moreover, transplant recipients require life-long immune suppression to tolerate the transplanted lung. A promising alternative therapeutic strategy is decellularization of whole lungs, which permits the isolation of an intact scaffold comprised of innate extracellular matrix (ECM) that can theoretically be recellularized with autologous stem or progenitor cells to yield a functional lung. Nonhuman primates (NHP) provide a highly relevant preclinical model with which to assess the feasibility of recellularized lung scaffolds for human lung transplantation. Our laboratory has successfully accomplished lung decellularization and initial stem cell inoculation of the resulting ECM scaffold in an NHP model. Decellularization of normal adult rhesus macaque lungs as well as the biology of the resulting acellular matrix have been extensively characterized. Acellular NHP matrices retained the anatomical and ultrastructural properties of native lungs with minimal effect on the content, organization, and appearance of ECM components, including collagen types I and IV, laminin, fibronectin, and sulfated glycosaminoglycans (GAG), due to decellularization. Proteomics analysis showed enrichment of ECM proteins in total tissue extracts due to the removal of cells and cellular proteins by decellularization. Cellular DNA was effectively removed after decellularization (~92% reduction), and the remaining nuclear material was found to be highly disorganized, very-low-molecular-weight fragments. Both bone marrow- and adipose-derived mesenchymal stem cells (MSC) attach to the decellularized lung matrix and can be maintained within this environment in vitro, suggesting that these cells may be promising candidates and useful tools for lung regeneration. Analysis of decellularized lung slice cultures to which MSC were seeded showed that the cells attached to the decellularized matrix, elongated, and proliferated in culture. Future investigations will focus on optimizing the recellularization of NHP lung scaffolds toward the goal of regenerating pulmonary tissue. Bringing this technology to eventual human clinical application will provide patients with an alternative therapeutic strategy as well as significantly reduce the demand for transplantable organs and patient wait-list time
    corecore