95 research outputs found

    Effect of partially purified fumonisins on cellular immune response in experimental murine paracoccidioidomycosis

    Get PDF
    Fumonisins are mycotoxins produced mainly by Fusarium verticillioides, which can modulate the immune response. Paracoccidioidomycosis (PCM), caused by the fungus Paracoccodioides brasiliensis (Pb), is one of the most important systemic mycoses in Latin America. The aim of this study was to evaluate the effect of the partially purified fumonisins on cellular immune response in mice infected with Pb. Four groups of male BALB/c mice were used. Groups PB and PB/FB were inoculated i.v. with 1 × 105 Pb yeast cells and, after 28 days, groups FB and PB/FB were inoculated (s.c.) with partially purified fumonisin B1 from F. verticillioides (5 × 2.25 mg FB1/kg body weight). After 7 days, cellular immune response was evaluated by delayed-type hypersensitivity (DTH) and lymphoproliferative assays (LA) using spleen cells. Nitric oxide (NO) production by spleen cells was also evaluated. The specific LA response to Pb antigen was higher in group PB than in FB and CTR groups (p< 0.05) but not significant with PB/FB. The DTH response was higher in infected than non infected groups (p<0.05) but also no significantly with PB and PB/FB groups. The lyphoproliferative response to ConA was decreased in FB or PB/FB in relation to CTR (p<0.05) but not with PB/FB and also a reduction of NO levels was observed in fumonisin treated in relation to control group FB1/kg (p<0.05). In conclusion, fumonisin B1 or other components of F. verticillioides extracts significantly suppress the unspecific cellular immune response and the NO production by splenocytes from P. brasiliensis infected or not infected BALB/c mice.Keywords: Fumonisin, Paracoccodioides brasiliensis, lymphoproliferative assay, nitric oxideAfrican Journal of Biotechnology Vol. 12(42), pp. 6126-613

    A systematic review of musculoskeletal disorders among school teachers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Musculoskeletal disorders (MSD) represent one of the most common and most expensive occupational health problems in both developed and developing countries. School teachers represent an occupational group among which there appears to be a high prevalence of MSD. Given that causes of MSD have been described as multi-factorial and prevalence rates vary between body sites and location of study, the objective of this systematic review was to investigate the prevalence and risk factors for MSD among teaching staff.</p> <p>Methods</p> <p>The study involved an extensive search of MEDLINE and EMBASE databases in 2011. All studies which reported on the prevalence and/or risk factors for MSD in the teaching profession were initially selected for inclusion. Reference lists of articles identified in the original search were then examined for additional publications. Of the 80 articles initially located, a final group of 33 met the inclusion criteria and were examined in detail.</p> <p>Results</p> <p>This review suggests that the prevalence of self-reported MSD among school teachers ranges between 39% and 95%. The most prevalent body sites appear to be the back, neck and upper limbs. Nursery school teachers appear to be more likely to report suffering from low back pain. Factors such as gender, age, length of employment and awkward posture have been associated with higher MSD prevalence rates.</p> <p>Conclusion</p> <p>Overall, this study suggests that school teachers are at a high risk of MSD. Further research, preferably longitudinal, is required to more thoroughly investigate the issue of MSD among teachers, with a greater emphasis on the possible wider use of ergonomic principles. This would represent a major step forward in the prevention of MSD among teachers, especially if easy to implement control measures could be recommended.</p

    Mesenchymal Stem Cells Transfer Mitochondria to the Cells with Virtually No Mitochondrial Function but Not with Pathogenic mtDNA Mutations

    Get PDF
    It has been reported that human mesenchymal stem cells (MSCs) can transfer mitochondria to the cells with severely compromised mitochondrial function. We tested whether the reported intercellular mitochondrial transfer could be replicated in different types of cells or under different experimental conditions, and tried to elucidate possible mechanism. Using biochemical selection methods, we found exponentially growing cells in restrictive media (uridine− and bromodeoxyuridine [BrdU]+) during the coculture of MSCs (uridine-independent and BrdU-sensitive) and 143B-derived cells with severe mitochondrial dysfunction induced by either long-term ethidium bromide treatment or short-term rhodamine 6G (R6G) treatment (uridine-dependent but BrdU-resistant). The exponentially growing cells had nuclear DNA fingerprint patterns identical to 143B, and a sequence of mitochondrial DNA (mtDNA) identical to the MSCs. Since R6G causes rapid and irreversible damage to mitochondria without the removal of mtDNA, the mitochondrial function appears to be restored through a direct transfer of mitochondria rather than mtDNA alone. Conditioned media, which were prepared by treating mtDNA-less 143B ρ0 cells under uridine-free condition, induced increased chemotaxis in MSC, which was also supported by transcriptome analysis. Cytochalasin B, an inhibitor of chemotaxis and cytoskeletal assembly, blocked mitochondrial transfer phenomenon in the above condition. However, we could not find any evidence of mitochondrial transfer to the cells harboring human pathogenic mtDNA mutations (A3243G mutation or 4,977 bp deletion). Thus, the mitochondrial transfer is limited to the condition of a near total absence of mitochondrial function. Elucidation of the mechanism of mitochondrial transfer will help us create a potential cell therapy-based mitochondrial restoration or mitochondrial gene therapy for human diseases caused by mitochondrial dysfunction

    Proteome Based Construction of the Lymphocyte Function-Associated Antigen 1 (LFA-1) Interactome in Human Dendritic Cells.

    Get PDF
    The β2-integrin lymphocyte function-associated antigen 1 (LFA-1) plays an important role in the migration, adhesion and intercellular communication of dendritic cells (DCs). During the differentiation of human DCs from monocyte precursors, LFA-1 ligand binding capacity is completely lost, even though its expression levels were remained constant. Yet LFA-1-mediated adhesive capacity on DCs can be regained by exposing DCs to the chemokine CCL21, suggesting a high degree of regulation of LFA-1 activity during the course of DC differentiation. The molecular mechanisms underlying this regulation of LFA-1 function in DCs, however, remain elusive. To get more insight we attempted to identify specific LFA-1 binding partners that may play a role in regulating LFA-1 activity in DCs. We used highly sensitive label free quantitative mass-spectrometry to identify proteins co-immunoprecipitated (co-IP) with LFA-1 from ex vivo generated DCs. Among the potential binding partners we identified not only established components of integrin signalling pathways and cytoskeletal proteins, but also several novel LFA-1 binding partners including CD13, galectin-3, thrombospondin-1 and CD44. Further comparison to the LFA-1 interaction partners in monocytes indicated that DC differentiation was accompanied by an overall increase in LFA-1 associated proteins, in particular cytoskeletal, signalling and plasma membrane (PM) proteins. The here presented LFA-1 interactome composed of 78 proteins thus represents a valuable resource of potential regulators of LFA-1 function during the DC lifecycle

    Dysregulation of Gene Expression in a Lysosomal Storage Disease Varies between Brain Regions Implicating Unexpected Mechanisms of Neuropathology

    Get PDF
    The characteristic neurological feature of many neurogenetic diseases is intellectual disability. Although specific neuropathological features have been described, the mechanisms by which specific gene defects lead to cognitive impairment remain obscure. To gain insight into abnormal functions occurring secondary to a single gene defect, whole transcriptome analysis was used to identify molecular and cellular pathways that are dysregulated in the brain in a mouse model of a lysosomal storage disorder (LSD) (mucopolysaccharidosis [MPS] VII). We assayed multiple anatomical regions separately, in a large cohort of normal and diseased mice, which greatly increased the number of significant changes that could be detected compared to past studies in LSD models. We found that patterns of aberrant gene expression and involvement of multiple molecular and cellular systems varied significantly between brain regions. A number of changes revealed unexpected system and process alterations, such as up-regulation of the immune system with few inflammatory changes (a significant difference from the closely related MPS IIIb model), down-regulation of major oligodendrocyte genes even though white matter changes are not a feature histopathologically, and a plethora of developmental gene changes. The involvement of multiple neural systems indicates that the mechanisms of neuropathology in this type of disease are much broader than previously appreciated. In addition, the variation in gene dysregulation between brain regions indicates that different neuropathologic mechanisms may predominate within different regions of a diseased brain caused by a single gene mutation

    Cytochrome P450-derived eicosanoids: the neglected pathway in cancer

    Get PDF
    Endogenously produced lipid autacoids are locally acting small molecule mediators that play a central role in the regulation of inflammation and tissue homeostasis. A well-studied group of autacoids are the products of arachidonic acid metabolism, among which the prostaglandins and leukotrienes are the best known. They are generated by two pathways controlled by the enzyme systems cyclooxygenase and lipoxygenase, respectively. However, arachidonic acid is also substrate for a third enzymatic pathway, the cytochrome P450 (CYP) system. This third eicosanoid pathway consists of two main branches: ω-hydroxylases convert arachidonic acid to hydroxyeicosatetraenoic acids (HETEs) and epoxygenases convert it to epoxyeicosatrienoic acids (EETs). This third CYP pathway was originally studied in conjunction with inflammatory and cardiovascular disease. Arachidonic acid and its metabolites have recently stimulated great interest in cancer biology; but, unlike prostaglandins and leukotrienes the link between cytochome P450 metabolites and cancer has received little attention. In this review, the emerging role in cancer of cytochrome P450 metabolites, notably 20-HETE and EETs, are discussed

    HIV Replication Enhances Production of Free Fatty Acids, Low Density Lipoproteins and Many Key Proteins Involved in Lipid Metabolism: A Proteomics Study

    Get PDF
    BACKGROUND: HIV-infected patients develop multiple metabolic abnormalities including insulin resistance, lipodystrophy and dyslipidemia. Although progression of these disorders has been associated with the use of various protease inhibitors and other antiretroviral drugs, HIV-infected individuals who have not received these treatments also develop lipid abnormalities albeit to a lesser extent. How HIV alters lipid metabolism in an infected cell and what molecular changes are affected through protein interaction pathways are not well-understood. RESULTS: Since many genetic, epigenetic, dietary and other factors influence lipid metabolism in vivo, we have chosen to study genome-wide changes in the proteomes of a human T-cell line before and after HIV infection in order to circumvent computational problems associated with multiple variables. Four separate experiments were conducted including one that compared 14 different time points over a period of >3 months. By subtractive analyses of protein profiles overtime, several hundred differentially expressed proteins were identified in HIV-infected cells by mass spectrometry and each protein was scrutinized for its biological functions by using various bioinformatics programs. Herein, we report 18 HIV-modulated proteins and their interaction pathways that enhance fatty acid synthesis, increase low density lipoproteins (triglycerides), dysregulate lipid transport, oxidize lipids, and alter cellular lipid metabolism. CONCLUSIONS: We conclude that HIV replication alone (i.e. without any influence of antiviral drugs, or other human genetic factors), can induce novel cellular enzymes and proteins that are significantly associated with biologically relevant processes involved in lipid synthesis, transport and metabolism (p = <0.0002-0.01). Translational and clinical studies on the newly discovered proteins may now shed light on how some of these proteins may be useful for early diagnosis of individuals who might be at high risk for developing lipid-related disorders. The target proteins could then be used for future studies in the development of inhibitors for preventing lipid-metabolic anomalies. This is the first direct evidence that HIV-modulates production of proteins that are significantly involved in disrupting the normal lipid-metabolic pathways

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac
    corecore