28 research outputs found

    Bottom RedOx Model (BROM v.1.1): a coupled benthic–pelagic model for simulation of water and sediment biogeochemistry

    Get PDF
    Interactions between seawater and benthic systems play an important role in global biogeochemical cycling. Benthic fluxes of some chemical elements (e.g., C, N, P, O, Si, Fe, Mn, S) alter the redox state and marine carbonate system (i.e., pH and carbonate saturation state), which in turn modulate the functioning of benthic and pelagic ecosystems. The redox state of the near-bottom layer in many regions can change with time, responding to the supply of organic matter, physical regime, and coastal discharge. We developed a model (BROM) to represent key biogeochemical processes in the water and sediments and to simulate changes occurring in the bottom boundary layer. BROM consists of a transport module (BROM-transport) and several biogeochemical modules that are fully compatible with the Framework for the Aquatic Biogeochemical Models, allowing independent coupling to hydrophysical models in 1-D, 2-D, or 3-D. We demonstrate that BROM is capable of simulating the seasonality in production and mineralization of organic matter as well as the mixing that leads to variations in redox conditions. BROM can be used for analyzing and interpreting data on sediment–water exchange, and for simulating the consequences of forcings such as climate change, external nutrient loading, ocean acidification, carbon storage leakage, and point-source metal pollution

    Stimulated emission and lasing in Cu(In,Ga)Se2 thin films

    Get PDF
    Stimulated emission and lasing in Cu(In,Ga)Se 2 thin films have been demonstrated at a temperature of 20 K using excitation by a nanosecond pulsed N 2 laser with power densities in the range from 2 to 100 kW cm − 2 . Sharp narrowing of the photoluminescence band, superlinear dependence of its intensity on excitation laser power, as well as stabilization of the spectral position and of the full-width at half-maximum of the band were observed in the films at increasing excitation intensity. The stimulated emission threshold was determined to be 20 kW cm − 2 . A gain value of 94 cm − 1 has been estimated using the variable stripe length method. Several sharp laser modes near 1.13 eV were observed above the laser threshold of I thr ~ 50 kW cm −

    The Large Enriched Germanium Experiment for Neutrinoless Double Beta Decay (LEGEND)

    Get PDF

    Contact angle hysteresis in the clay-water-air system of soils

    No full text
    The purpose of this research is to study the change in wettability of clays due to the influence of mesophilic soil microorganisms' activity when adding model contaminants: water-in-oil emulsion, glycerol and oleic acid. During the experiments, the objectives of this study were to specify peculiarities of wetting contact angle hysteresis of clays with substrates of different mineral composition and microbial activity. Hydrophilicity/hydrophobicity of the stimulator for microbial activity does not have a clear effect on clay properties. The surface heterogeneity mostly increases with time, perhaps, due to biofilm exudates whatever was a type of microbial stimulator. Chemical and geometric heterogeneities played comparable roles in the surface hydrophilic-hydrophobic balance. Results obtained prove that microbial communities and/or the Fe chemical state alteration (pyrite, hematite or goethite) were responsible for both hydrophilization and hydrophobization of the surface. The equation for the drop spreading rate was presented and verified by well comparison of experimental results with simulations.179-19
    corecore