52 research outputs found

    Mutations in the EXT1 and EXT2 genes in hereditary multiple exostoses.

    Get PDF
    Hereditary multiple exostoses (EXT; MIM 133700) is an autosomal dominant bone disorder characterized by the presence of multiple benign cartilage-capped tumors (exostoses). Besides suffering complications caused by the pressure of these exostoses on the surrounding tissues, EXT patients are at an increased risk for malignant chondrosarcoma, which may develop from an exostosis. EXT is genetically heterogeneous, and three loci have been identified so far: EXT1, on chromosome 8q23-q24; EXT2, on 11p11-p12; and EXT3, on the short arm of chromosome 19. The EXT1 and EXT2 genes were cloned recently, and they were shown to be homologous. We have now analyzed the EXT1 and EXT2 genes, in 26 EXT families originating from nine countries, to identify the underlying disease-causing mutation. Of the 26 families, 10 families had an EXT1 mutation, and 10 had an EXT2 mutation. Twelve of these mutations have never been described before. In addition, we have reviewed all EXT1 and EXT2 mutations reported so far, to determine the nature, frequency, and distribution of mutations that cause EXT. From this analysis, we conclude that mutations in either the EXT1 or the EXT2 gene are responsible for the majority of EXT cases. Most of the mutations in EXT1 and EXT2 cause premature termination of the EXT proteins, whereas missense mutations are rare. The development is thus mainly due to loss of function of the EXT genes, consistent with the hypothesis that the EXT genes have a tumor- suppressor function

    B-cell lymphoma in retrieved femoral heads: a long term follow up

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A relatively high incidence of pathological conditions in retrieved femoral heads, including a group of patients having low grade B-cell lymphoma, has been described before. At short term follow up none of these patients with low-grade B-cell lymphoma showed evidence of systemic disease. However, the long term follow up of these patients is not known.</p> <p>Methods</p> <p>From November 1994 up to and including December 2005 we screened all femoral heads removed at the time of primary total hip replacement histopathologically and included them in the bone banking protocol according to the guidelines of the American Associations of Tissue Banks (AATB) and the European Association of Musculo-Skeletal Transplantation (EAMST). We determined the percentage of B-cell lymphoma in all femoral heads and in the group that fulfilled all criteria of the bone banking protocol and report on the long-term follow-up.</p> <p>Results</p> <p>Of 852 femoral heads fourteen (1.6%) were highly suspicious for low-grade B-cell lymphoma. Of these 852 femoral heads, 504 were eligible for bone transplantation according to the guidelines of the AATB and the EAMST. Six femoral heads of this group of 504 were highly suspicious for low-grade B-cell lymphoma (1.2%). At long term follow up two (0.2%) of all patients developed systemic malignant disease and one of them needed medical treatment for her condition.</p> <p>Conclusion</p> <p>In routine histopathological screening we found variable numbers of low-grade B-cell lymphoma throughout the years, even in a group of femoral heads that were eligible for bone transplantation. Allogenic transmission of malignancy has not yet been reported on, but surviving viruses are proven to be transmissible. Therefore, we recommend the routine histopathological evaluation of all femoral heads removed at primary total hip arthroplasty as a tool for quality control, whether the femoral head is used for bone banking or not.</p

    Medical countermeasures for national security: a new government role in the pharmaceuticalization of society

    Get PDF
    How do governments contribute to the pharmaceuticalization of society? Whilst the pivotal role of industry is extensively documented, this article shows that governments too are accelerating, intensifying and opening up new trajectories of pharmaceuticalization in society. Governments are becoming more deeply invested in pharmaceuticals because their national security strategies now aspire to defend populations against health-based threats like bioterrorism and pandemics. To counter those threats, governments are acquiring and stockpiling a panoply of ‘medical countermeasures’ such as antivirals, next-generation vaccines, antibiotics and anti-toxins. More than that, governments are actively incentivizing the development of many new medical countermeasures – principally by marshaling the state's unique powers to introduce exceptional measures in the name of protecting national security. At least five extraordinary policy interventions have been introduced by governments with the aim of stimulating the commercial development of novel medical countermeasures: (1) allocating earmarked public funds, (2) granting comprehensive legal protections to pharmaceutical companies against injury compensation claims, (3) introducing bespoke pathways for regulatory approval, (4) instantiating extraordinary emergency use procedures allowing for the use of unapproved medicines, and (5) designing innovative logistical distribution systems for mass drug administration outside of clinical settings. Those combined efforts, the article argues, are spawning a new, government-led and quite exceptional medical countermeasure regime operating beyond the conventional boundaries of pharmaceutical development and regulation. In the first comprehensive analysis of the pharmaceuticalization dynamics at play in national security policy, this article unearths the detailed array of policy interventions through which governments too are becoming more deeply imbricated in the pharmaceuticalization of society

    The race for Ebola drugs: pharmaceuticals, security and global health governance

    Get PDF
    The international Ebola response mirrors two broader trends in global health governance: (1) the framing of infectious disease outbreaks as a security threat; and (2) a tendency to respond by providing medicines and vaccines. This article identifies three mechanisms that interlink these trends. First, securitisation encourages technological policy responses. Second, it creates an exceptional political space in which pharmaceutical development can be freed from constraints. Third, it creates an institutional architecture that facilitates pharmaceutical policy responses. The ways in which the securitisation of health reinforces pharmaceutical policy strategies must, the article concludes, be included in ongoing efforts to evaluate them normatively and politically

    Biofuels, greenhouse gases and climate change. A review

    Full text link
    • …
    corecore