440 research outputs found
An overall strategy based on regression models to estimate relative survival and model the effects of prognostic factors in cancer survival studies.
Relative survival provides a measure of the proportion of patients dying from the disease under study without requiring the knowledge of the cause of death. We propose an overall strategy based on regression models to estimate the relative survival and model the effects of potential prognostic factors. The baseline hazard was modelled until 10 years follow-up using parametric continuous functions. Six models including cubic regression splines were considered and the Akaike Information Criterion was used to select the final model. This approach yielded smooth and reliable estimates of mortality hazard and allowed us to deal with sparse data taking into account all the available information. Splines were also used to model simultaneously non-linear effects of continuous covariates and time-dependent hazard ratios. This led to a graphical representation of the hazard ratio that can be useful for clinical interpretation. Estimates of these models were obtained by likelihood maximization. We showed that these estimates could be also obtained using standard algorithms for Poisson regression
Controlled splitting of an atomic wave packet
We propose a simple scheme capable of adiabatically splitting an atomic wave
packet using two independent translating traps. Implemented with optical dipole
traps, our scheme allows a high degree of flexibility for atom interferometry
arrangements and highlights its potential as an efficient and high fidelity
atom optical beam splitter.Comment: 4 pages, 4 figures. Accepted by Phys. Rev. Let
Multilayered Al/CuO thermite formation by reactive magnetron sputtering: Nano versus micro
Multilayered Al/CuO thermite was deposited by a dc reactive magnetron sputtering method. Pure Al and Cu targets were used in argon–oxygen gas mixture plasma and with an oxygen partial pressure of 0.13 Pa. The process was designed to produce low stress (<50 MPa) multilayered nanoenergetic material, each layer being in the range of tens nanometer to one micron. The reaction temperature and heat of reaction were measured using differential scanning calorimetry and thermal analysis to compare nanostructured layered materials to microstructured materials. For the nanostructured multilayers, all the energy is released before the Al melting point. In the case of the microstructured samples at least 2/3 of the energy is released at higher temperatures, between 1036 and 1356 K
Measuring the distribution of current fluctuations through a Josephson junction with very short current pulses
We propose to probe the distribution of current fluctuations by means of the
escape probability histogram of a Josephson junction (JJ), obtained using very
short bias current pulses in the adiabatic regime, where the low-frequency
component of the current fluctuations plays a crucial role. We analyze the
effect of the third cumulant on the histogram in the small skewness limit, and
address two concrete examples assuming realistic parameters for the JJ. In the
first one we study the effects due to fluctuations produced by a tunnel
junction, finding that the signature of higher cumulants can be detected by
taking the derivative of the escape probability with respect to current. In
such a realistic situation, though, the determination of the whole distribution
of current fluctuations requires an amplification of the cumulants. As a second
example we consider magnetic flux fluctuations acting on a SQUID produced by a
random telegraph source of noise.Comment: 6 pages, 6 figures; final versio
Characterization of carbonaceous aerosols during the MINOS campaign in Crete, July–August 2001: a multi-analytical approach
International audienceDuring the major part of the Mediterranean Intensive Oxidant Study (MINOS) campaign (summer 2001, Crete Isl.), the Marine Boundary Layer (MBL) air was influenced by long range transport of biomass burning from the northern and western part of the Black Sea. During this campaign, carbonaceous aerosols were collected on quartz filters at a Free Tropospheric (FT) site, and at a MBL site together with size-resolved distribution of aerosols. Three Evolution Gas Analysis (EGA) protocols have been tested in order to better characterize the collected aged biomass burning smoke: A 2-step thermal method (Cachier et al., 1989) and a thermo-optical technique using two different temperature programs. The later temperature programs are those used for IMPROVE (Interagency Monitoring of Protected Visual Environments) and NIOSH 5040 (National Institute of Occupational Safety and Health). Artifacts were observed using the NIOSH temperature program and identified as interactions between carbon and dust deposited on the filter matrix at high temperature (T>550ºC) under the pure helium step of the analysis. During the MINOS campaign, Black Carbon (BC) and Organic Carbon (OC) mass concentrations were on average respectively 1.19±0.56 and 3.62±1.08 mgC/m3 for the IMPROVE temperature program, and 1.09±0.36 and 3.75±1.24 mgC/m3 for the thermal method. Though these values compare well on average and the agreement between the Total Carbon (TC) measurements sample to sample was excellent (slope=1.00, r2=0.93, n=56), important discrepancies were observed in determining BC concentrations from these two methods (average error of 33±22%). BC from the IMPROVE temperature program compared well with non-sea-salt potassium (nss-K) pointing out an optical sensitivity to biomass burning. On the other hand, BC from the thermal method showed a better agreement with non-sea-salt sulfate (nss-SO4), considered as a tracer for fossil fuel combustion during the MINOS campaign. The coupling between these two methods for determining BC brings here new insights on the origin of carbonaceous aerosols in a complex mixture of different sources. It brings also to our attention that important deviations in BC levels are observed using three widely used EGA's techniques and most probably none of the EGA tested here are well adapted to fully characterize this aerosol mixture. Spherical, smooth and silico-aluminated fly-ash observed by an Analytical Scanning Electron Microscope (ASEM) confirm the influence of coal combustion on the carbonaceous aerosol load throughout the campaign. A rough calculation based on a BC/nss-SO4 mass ratio suggests that biomass burning could be responsible for half of the BC concentration recorded during the MINOS campaign. From the plot of BC as a function of TC, two linear correlations were observed corresponding to 2 times series (before and after 12 August). Such good correlations suggest, from a first look, that both BC and OC have similar origin and atmospheric transport. On the other hand, the plot of BC as a function of TC obtained from the 2-step thermal method applied to DEKATI Low Pressure Cascade Impactor samples does not show a similar correlation and points out a non conservative distribution of this ratio with 2 super micron modes enriched in OC, correlated with sea salt aerosols and probably originating from gas-to-particle conversion
Cavity-based single atom preparation and high-fidelity hyperfine state readout
We prepare and detect the hyperfine state of a single 87Rb atom coupled to a
fiber-based high finesse cavity on an atom chip. The atom is extracted from a
Bose-Einstein condensate and trapped at the maximum of the cavity field,
resulting in a reproducibly strong atom-cavity coupling. We use the cavity
reflection and transmission signal to infer the atomic hyperfine state with a
fidelity exceeding 99.92% in a read-out time of 100 microseconds. The atom is
still trapped after detection.Comment: 5 pages, 4 figure
Realizing a stable magnetic double-well potential on an atom chip
We discuss design considerations and the realization of a magnetic
double-well potential on an atom chip using current-carrying wires. Stability
requirements for the trapping potential lead to a typical size of order microns
for such a device. We also present experiments using the device to manipulate
cold, trapped atoms
Characterization of carbonaceous aerosols during the MINOS campaign in Crete, July–August 2001: a multi-analytical approach
During the major part of the Mediterranean Intensive Oxidant Study (MINOS) campaign (summer 2001, Crete Isl.), the Marine Boundary Layer (MBL) air was influenced by long range transport of biomass burning from the northern and western part of the Black Sea. During this campaign, carbonaceous aerosols were collected on quartz filters at a Free Tropospheric (FT) site, and at a MBL site together with size-resolved distribution of aerosols. Three Evolution Gas Analysis (EGA) protocols have been tested in order to better characterize the collected aged biomass burning smoke: A 2-step thermal method (Cachier et al., 1989) and a thermo-optical technique using two different temperature programs. The later temperature programs are those used for IMPROVE (Interagency Monitoring of Protected Visual Environments) and NIOSH 5040 (National Institute of Occupational Safety and Health). Artifacts were observed using the NIOSH temperature program and identified as interactions between carbon and dust deposited on the filter matrix at high temperature (T>550ºC) under the pure helium step of the analysis.<br> <br> During the MINOS campaign, Black Carbon (BC) and Organic Carbon (OC) mass concentrations were on average respectively 1.19±0.56 and 3.62±1.08 <font face='Symbol'>m</font>gC/m<sup>3</sup> for the IMPROVE temperature program, and 1.09±0.36 and 3.75±1.24 <font face='Symbol'>m</font>gC/m<sup>3</sup> for the thermal method. Though these values compare well on average and the agreement between the Total Carbon (TC) measurements sample to sample was excellent (slope=1.00, <i>r</i><sup>2</sup>=0.93, n=56), important discrepancies were observed in determining BC concentrations from these two methods (average error of 33±22%). BC from the IMPROVE temperature program compared well with non-sea-salt potassium (nss-K) pointing out an optical sensitivity to biomass burning. On the other hand, BC from the thermal method showed a better agreement with non-sea-salt sulfate (nss-SO<sub>4</sub>), considered as a tracer for fossil fuel combustion during the MINOS campaign. The coupling between these two methods for determining BC brings here new insights on the origin of carbonaceous aerosols in a complex mixture of different sources. It brings also to our attention that important deviations in BC levels are observed using three widely used EGA's techniques and most probably none of the EGA tested here are well adapted to fully characterize this aerosol mixture.<br> <br> Spherical, smooth and silico-aluminated fly-ash observed by an Analytical Scanning Electron Microscope (ASEM) confirm the influence of coal combustion on the carbonaceous aerosol load throughout the campaign. A rough calculation based on a BC/nss-SO<sub>4</sub> mass ratio suggests that biomass burning could be responsible for half of the BC concentration recorded during the MINOS campaign.<br> <br> From the plot of BC as a function of TC, two linear correlations were observed corresponding to 2 times series (before and after 12 August). Such good correlations suggest, from a first look, that both BC and OC have similar origin and atmospheric transport. On the other hand, the plot of BC as a function of TC obtained from the 2-step thermal method applied to DEKATI Low Pressure Cascade Impactor samples does not show a similar correlation and points out a non conservative distribution of this ratio with 2 super micron modes enriched in OC, correlated with sea salt aerosols and probably originating from gas-to-particle conversion
Comparison between simulated and observed chemical composition of fine aerosols in Paris (France) during springtime: contribution of regional versus continental emissions
Hourly concentrations of inorganic salts (ions) and carbonaceous material in fine aerosols (aerodynamic diameter, A.D. <2.5 μm) have been determined experimentally from fast measurements performed for a 3-week period in spring 2007 in Paris (France). The sum of these two chemical components (ions and carbonaceous aerosols) has shown to account for most of the fine aerosol mass (PM<sub>2.5</sub>). This time-resolved dataset allowed investigating the factors controlling the levels of PM<sub>2.5</sub> in Paris and showed that polluted periods with PM<sub>2.5</sub> > 15 μg m<sup>−3</sup> were characterized by air masses of continental (North-Western Europe) origin and chemical composition made by 75% of ions. By contrast, periods with clean marine air masses have shown the lowest PM<sub>2.5</sub> concentrations (typically of about 10 μg m<sup>−3</sup>); carbonaceous aerosols contributing for most of this mass (typically 75%). <br><br> In order to better discriminate between local and continental contributions to the observed chemical composition and concentrations of PM<sub>2.5</sub> over Paris, a comparative study was performed between this time-resolved dataset and the outputs of a chemistry transport model (CHIMERE), showing a relatively good capability of the model to reproduce the time-limited intense maxima observed in the field for PM<sub>2.5</sub> and ion species. Different model scenarios were then investigated switching off local and European (North-Western and Central) emissions. Results of these scenarios have clearly shown that most of the ions observed over Paris during polluted periods, were either transported or formed in-situ from gas precursors transported from Northern Europe. On the opposite, long-range transport from Europe appeared to weakly contribute to the levels of carbonaceous aerosols observed over Paris. <br><br> The model failed to properly account for the concentration levels and variability of secondary organic aerosols (SOA) determined experimentally by the EC-tracer method. The abundance of SOA (relatively to organic aerosol, OA) was as much as 75%, showing a weak dependence on air masses origin. Elevated SOA/OA ratios were also observed for air masses having residence time above ground of less than 10 h, suggesting intense emissions and/or photochemical processes leading to rapid formation of secondary organic aerosols
Spin squeezing, entanglement and quantum metrology with Bose-Einstein condensates
Squeezed states, a special kind of entangled states, are known as a useful
resource for quantum metrology. In interferometric sensors they allow to
overcome the "classical" projection noise limit stemming from the independent
nature of the individual photons or atoms within the interferometer. Motivated
by the potential impact on metrology as wells as by fundamental questions in
the context of entanglement, a lot of theoretical and experimental effort has
been made to study squeezed states. The first squeezed states useful for
quantum enhanced metrology have been proposed and generated in quantum optics,
where the squeezed variables are the coherences of the light field. In this
tutorial we focus on spin squeezing in atomic systems. We give an introduction
to its concepts and discuss its generation in Bose-Einstein condensates. We
discuss in detail the experimental requirements necessary for the generation
and direct detection of coherent spin squeezing. Two exemplary experiments
demonstrating adiabatically prepared spin squeezing based on motional degrees
of freedom and diabatically realized spin squeezing based on internal hyperfine
degrees of freedom are discussed.Comment: Phd tutorial, 23 pages, 17 figure
- …