35 research outputs found

    Identification of novel subgroup a variants with enhanced receptor binding and replicative capacity in primary isolates of anaemogenic strains of feline leukaemia virus

    Get PDF
    <b>BACKGROUND:</b> The development of anaemia in feline leukaemia virus (FeLV)-infected cats is associated with the emergence of a novel viral subgroup, FeLV-C. FeLV-C arises from the subgroup that is transmitted, FeLV-A, through alterations in the amino acid sequence of the receptor binding domain (RBD) of the envelope glycoprotein that result in a shift in the receptor usage and the cell tropism of the virus. The factors that influence the transition from subgroup A to subgroup C remain unclear, one possibility is that a selective pressure in the host drives the acquisition of mutations in the RBD, creating A/C intermediates with enhanced abilities to interact with the FeLV-C receptor, FLVCR. In order to understand further the emergence of FeLV-C in the infected cat, we examined primary isolates of FeLV-C for evidence of FeLV-A variants that bore mutations consistent with a gradual evolution from FeLV-A to FeLV-C.<p></p> <b>RESULTS:</b> Within each isolate of FeLV-C, we identified variants that were ostensibly subgroup A by nucleic acid sequence comparisons, but which bore mutations in the RBD. One such mutation, N91D, was present in multiple isolates and when engineered into a molecular clone of the prototypic FeLV-A (Glasgow-1), enhanced replication was noted in feline cells. Expression of the N91D Env on murine leukaemia virus (MLV) pseudotypes enhanced viral entry mediated by the FeLV-A receptor THTR1 while soluble FeLV-A Env bearing the N91D mutation bound more efficiently to mouse or guinea pig cells bearing the FeLV-A and -C receptors. Long-term in vitro culture of variants bearing the N91D substitution in the presence of anti-FeLV gp70 antibodies did not result in the emergence of FeLV-C variants, suggesting that additional selective pressures in the infected cat may drive the subsequent evolution from subgroup A to subgroup C.<p></p> <b>CONCLUSIONS:</b> Our data support a model in which variants of FeLV-A, bearing subtle differences in the RBD of Env, may be predisposed towards enhanced replication in vivo and subsequent conversion to FeLV-C. The selection pressures in vivo that drive the emergence of FeLV-C in a proportion of infected cats remain to be established

    Cloning and characterization of a novel oocyte-specific gene encoding an F-Box protein in rainbow trout (Oncorhynchus mykiss)

    Get PDF
    BACKGROUND: Oocyte-specific genes play critical roles in oogenesis, folliculogenesis and early embryonic development. The objectives of this study were to characterize the expression of a novel oocyte-specific gene encoding an F-box protein during ovarian development in rainbow trout, and identify its potential interacting partners in rainbow trout oocytes. METHODS: Through analysis of expressed sequence tags (ESTs) from a rainbow trout oocyte cDNA library, a novel transcript represented by ESTs only from the oocyte library was identified. The complete cDNA sequence for the novel gene (named fbxoo) was obtained by assembling sequences from an EST clone and a 5′RACE product. The expression and localization of fbxoo mRNA and protein in ovaries of different developmental stages were analyzed by quantitative real time PCR, immunoblotting, in situ hybridization and immunohistochemistry. Identification of Fbxoo binding proteins was performed by yeast two-hybrid screening. RESULTS: fbxoo mRNA is specifically expressed in mature oocytes as revealed by tissue distribution analysis. The fbxoo cDNA sequence is 1,996 bp in length containing an open reading frame, which encodes a predicted protein of 514 amino acids. The novel protein sequence does not match any known protein sequences in the NCBI database. However, a search of the Pfam protein database revealed that the protein contains an F-box motif at the N-terminus, indicating that Fbxoo is a new member of the F-box protein family. The expression of fbxoo mRNA and protein is high in ovaries at early pre-vitellogenesis stage, and both fbxoo mRNA and protein are predominantly expressed in early pre-vitellogenic oocytes. Several proteins including tissue inhibitor of metalloproteinase 2 (Timp2) were identified as potential Fbxoo protein binding partners. CONCLUSIONS: Results suggest that the novel oocyte-specific F-box protein may play an important role in early oocyte development by regulating other critical proteins involved in oogenesis in rainbow trout

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.
    corecore