2,475 research outputs found
Two state scattering problem to Multi-channel scattering problem: Analytically solvable model
Starting from few simple examples we have proposed a general method for
finding an exact analytical solution for the two state scattering problem in
presence of a delta function coupling. We have also extended our model to deal
with general one dimensional multi-channel scattering problems
Curve Crossing Problem with Arbitrary Coupling: Analytically Solvable Model
We give a general method for finding an exact analytical solution for the two
state curve crossing problem. The solution requires the knowledge of the
Green's function for the motion on the uncoupled potential. We use the method
to find the solution of the problem in the case of parabolic potentials coupled
by Gaussian interaction. Our method is applied to this model system to
calculate the effect of curve crossing on electronic absorption spectrum and
resonance Raman excitation profile
Recommended from our members
Output from VIP cells of the mammalian central clock regulates daily physiological rhythms
The suprachiasmatic nucleus (SCN) circadian clock is critical for optimising daily cycles in mammalian physiology and behaviour. The roles of the various SCN cell types in communicating timing information to downstream physiological systems remain incompletely understood, however. In particular, while vasoactive intestinal polypeptide (VIP) signalling is essential for SCN function and whole animal circadian rhythmicity, the specific contributions of VIP cell output to physiological control remains uncertain. Here we reveal a key role for SCN VIP cells in central clock output. Using multielectrode recording and optogenetic manipulations, we show that VIP neurons provide coordinated daily waves of GABAergic input to target cells across the paraventricular hypothalamus and ventral thalamus, supressing their activity during the mid to late day. Using chemogenetic manipulation, we further demonstrate specific roles for this circuitry in the daily control of heart rate and corticosterone secretion, collectively establishing SCN VIP cells as influential regulators of physiological timing
Global parameter search reveals design principles of the mammalian circadian clock
Background: Virtually all living organisms have evolved a circadian (~24 hour) clock that controls physiological and behavioural processes with exquisite precision throughout the day/night cycle. The suprachiasmatic nucleus (SCN), which generates these ~24 h rhythms in mammals, consists of
several thousand neurons. Each neuron contains a gene-regulatory network generating molecular oscillations, and the individual neuron oscillations are synchronised by intercellular coupling, presumably via neurotransmitters. Although this basic mechanism is currently accepted and has
been recapitulated in mathematical models, several fundamental questions about the design principles of the SCN remain little understood. For example, a remarkable property of the SCN is that the phase of the SCN rhythm resets rapidly after a 'jet lag' type experiment, i.e. when the light/ dark (LD) cycle is abruptly advanced or delayed by several hours.
Results: Here, we describe an extensive parameter optimization of a previously constructed simplified model of the SCN in order to further understand its design principles. By examining the top 50 solutions from the parameter optimization, we show that the neurotransmitters' role in generating the molecular circadian rhythms is extremely important. In addition, we show that when
a neurotransmitter drives the rhythm of a system of coupled damped oscillators, it exhibits very robust synchronization and is much more easily entrained to light/dark cycles. We were also able to recreate in our simulations the fast rhythm resetting seen after a 'jet lag' type experiment.
Conclusion: Our work shows that a careful exploration of parameter space for even an extremely simplified model of the mammalian clock can reveal unexpected behaviours and non-trivial predictions. Our results suggest that the neurotransmitter feedback loop plays a crucial role in the
robustness and phase resetting properties of the mammalian clock, even at the single neuron level
Light hadron, Charmonium(-like) and Bottomonium(-like) states
Hadron physics represents the study of strongly interacting matter in all its
manifestations and the understanding of its properties and interactions. The
interest on this field has been revitalized by the discovery of new light
hadrons, charmonium- and bottomonium-like states. I review the most recent
experimental results from different experiments.Comment: Presented at Lepton-Photon 2011, Mumbai, India; 21 pages, 18 figures;
add more references; some correctio
Towards the glueball spectrum from unquenched lattice QCD
We use a variational technique to study heavy glueballs on gauge
configurations generated with 2+1 flavours of ASQTAD improved staggered
fermions. The variational technique includes glueball scattering states. The
measurements were made using 2150 configurations at 0.092 fm with a pion mass
of 360 MeV. We report masses for 10 glueball states. We discuss the prospects
for unquenched lattice QCD calculations of the oddballs.Comment: 19 pages, 4 tables and 8 figures. One figure added. Now matches the
published versio
The Cyprinodon variegatus genome reveals gene expression changes underlying differences in skull morphology among closely related species
Genes in durophage intersection set at 15 dpf. This is a comma separated table of the genes in the 15 dpf durophage intersection set. Given are edgeR results for each pairwise comparison. Columns indicating whether a gene is included in the intersection set at a threshold of 1.5 or 2 fold are provided. (CSV 13 kb
Nasal-type NK/T cell lymphoma: clinical features and treatment outcome
Nasal-type NK/T cell lymphoma is an increasingly recognised disease entity of aggressive clinical behaviour. The objective of this study was to investigate clinical features and treatment outcomes in patients with nasal-type NK/T cell lymphoma. From January 1991 to December 2003, 26 patients diagnosed as nasal-type NK/T cell lymphoma were included in the analysis. One half of patients presented with poor performance status (ECOG ⩾2); 46% of patients were categorised as high intermediate or high-risk group according to IPI; and 46% of patients were diagnosed at advanced stage. The median survival for 26 patients with nasal-type NK/T cell lymphoma was 7.4 months (95% CI, 0.1, 16.9). The treatment outcome of primary anthracycline-based chemotherapy was poor: 60% CR rate in localised disease and 0% CR rate in advanced disease. After a median follow-up of 24.4 months (range 3.1–99.0) in patients with localised disease who had achieved a CR (range 29.6–165.7), three patients (50.0%) developed disease recurrence at 6.1, 21.8, and 52.1 months, respectively, and all patients presented with locoregional failure. The predictive factors for poor survival were of age greater than 60, advanced stage and poor performance in multivariate analysis. In conclusion, Nasal-type NK/T cell lymphomas showed a poor response to the conventional anthracycline-based chemotherapy, and thus an investigation for an innovative therapy is urgently needed to improve survival in these patients
Acute interaction between hydrocortisone and insulin alters the plasma metabolome in humans
With the aim of identifying biomarkers of glucocorticoid action and their relationship with biomarkers of insulin action, metabolomic profiling was carried out in plasma samples from twenty healthy men who were administered either a low or medium dose insulin infusion (n = 10 each group). In addition, all subjects were given metyrapone (to inhibit adrenal cortisol secretion) +/-hydrocortisone (HC) in a randomised crossover design to produce low, medium and high glucocorticoid levels. The clearest effects of insulin were to reduce plasma levels of the branched chain amino acids (BCAs) leucine/isoleucine and their deaminated metabolites, and lowered free fatty acids and acylcarnitines. The highest dose of hydrocortisone increased plasma BCAs in both insulin groups but increased free fatty acids only in the high insulin group, however hydrocortisone did not affect the levels of acyl carnitines in either group. The clearest interaction between HC and insulin was that hydrocortisone produced an elevation in levels of BCAs and their metabolites which were lowered by insulin. The direct modulation of BCAs by glucocorticoids and insulin may provide the basis for improved in vivo monitoring of glucocorticoid and insulin action
- …