8,168 research outputs found

    Surface Roughness Dominated Pinning Mechanism of Magnetic Vortices in Soft Ferromagnetic Films

    Full text link
    Although pinning of domain walls in ferromagnets is ubiquitous, the absence of an appropriate characterization tool has limited the ability to correlate the physical and magnetic microstructures of ferromagnetic films with specific pinning mechanisms. Here, we show that the pinning of a magnetic vortex, the simplest possible domain structure in soft ferromagnets, is strongly correlated with surface roughness, and we make a quantitative comparison of the pinning energy and spatial range in films of various thickness. The results demonstrate that thickness fluctuations on the lateral length scale of the vortex core diameter, i.e. an effective roughness at a specific length scale, provides the dominant pinning mechanism. We argue that this mechanism will be important in virtually any soft ferromagnetic film.Comment: 4 figure

    Feasibility study of silicon nitride protection of plastic encapsulated semiconductors

    Get PDF
    The application of low temperature silicon nitride protective layers on wire bonded integrated circuits mounted on lead frame assemblies is reported. An evaluation of the mechanical and electrical compatibility of both plasma nitride and photochemical silicon nitride (photonitride) passivations (parallel evaluations) of integrated circuits which were then encapsulated in plastic is described. Photonitride passivation is compatible with all wire bonded lead frame assemblies, with or without initial chip passivation. Plasma nitride passivation of lead frame assemblies is possible only if the chip is passivated before lead frame assembly. The survival rate after the environmental test sequence of devices with a coating of plasma nitride on the chip and a coating of either plasma nitride or photonitride over the assembled device is significantly greater than that of devices assembled with no nitride protective coating over either chip or lead frame

    Thrust vector control study for large /260 inch/ rocket motor applications

    Get PDF
    Design concepts of thrust vector control for large rocket motor application

    Constraining the Temperature of Impact Melt from the Mistastin Lake Impact Structure Using Zircon Crystal Structures

    Get PDF
    Impact melt is a product of hyper-velocity impact events formed by the instantaneous melting of near-surface target rocks. Constraining the temperature of impact melt is vital to understanding its prograde heating and cooling history, which can have implications for inferring the environment of early Earth ~4.0 billion years ago when microbial life potentially arose. To date, only one datum on the initial impact melt temperature has been derived by Timms et al. These authors studied zirconia microstructures and crystallographic orientations that revealed the former presence of cubic zirconia, found in a black impact glass at the Mistastin Lake impact structure, Canada. The presence of cubic zirconia indicates a minimum temperature for the impact melt of >2370C from the dissociation temperature of zircon to cubic zirconia and liquid SiO2. With only one temperature datum, it is still difficult to constrain the entire temperature range experienced during the impact melting process; from its instantaneous formation to thermal equilibrium with the cold clasts collected along the crater floor and walls. In addition, obtaining a temperature value from only one type of impactite limits the inferred temperature range, because each impactite experiences a different cooling history. In this study, we present a preliminary investigation of 61 zircon crystals, 14 of which are similar to those studied by Timms et al., from the Mistastin Lake impact structure. To acquire a more accurate temperature profile representative of impact melt, zircon crystals were collected from different types of impactites containing impact melt, including additional samples of the black impact glass studied by Timms et al

    Radio Recombination Lines at Decametre Wavelengths: Prospects for the Future

    Full text link
    This paper considers the suitability of a number of emerging and future instruments for the study of radio recombination lines (RRLs) at frequencies below 200 MHz. These lines arise only in low-density regions of the ionized interstellar medium, and they may represent a frequency-dependent foreground for next-generation experiments trying to detect H I signals from the Epoch of Reionization and Dark Ages ("21-cm cosmology"). We summarize existing decametre-wavelength observations of RRLs, which have detected only carbon RRLs. We then show that, for an interferometric array, the primary instrumental factor limiting detection and study of the RRLs is the areal filling factor of the array. We consider the Long Wavelength Array (LWA-1), the LOw Frequency ARray (LOFAR), the low-frequency component of the Square Kilometre Array (SKA-lo), and a future Lunar Radio Array (LRA), all of which will operate at decametre wavelengths. These arrays offer digital signal processing, which should produce more stable and better defined spectral bandpasses; larger frequency tuning ranges; and better angular resolution than that of the previous generation of instruments that have been used in the past for RRL observations. Detecting Galactic carbon RRLs, with optical depths at the level of 10^-3, appears feasible for all of these arrays, with integration times of no more than 100 hr. The SKA-lo and LRA, and the LWA-1 and LOFAR at the lowest frequencies, should have a high enough filling factor to detect lines with much lower optical depths, of order 10^-4 in a few hundred hours. The amount of RRL-hosting gas present in the Galaxy at the high Galactic latitudes likely to be targeted in 21-cm cosmology studies is currently unknown. If present, however, the spectral fluctuations from RRLs could be comparable to or exceed the anticipated H I signals.Comment: 9 pages; Astron. & Astrophys., in pres

    Upper Limits on the Continuum Emission from Geminga at 74 and 326 MHz

    Get PDF
    We report a search for radio continuum emission from the gamma-ray pulsar Geminga. We have used the VLA to image the location of the optical counterpart of Geminga at 74 and 326 MHz. We detect no radio counterpart. We derive upper limits to the pulse-averaged flux density of Geminga, taking diffractive scintillation into account. We find that diffractive scintillation is probably quenched at 74 MHz and does not influence our upper limit, S < 56 mJy (2\sigma), but that a 95% confidence level at 326 MHz is S < 5 mJy. Owing to uncertainties on the other low-frequency detections and the possibility of intrinsic variability or extrinsic variability (refractive interstellar scintillation) or both, our non-detections are nominally consistent with these previous detections.Comment: 8 pages, LaTeX2e with AASTeX 4.0, 3 figures; to be published in Ap

    Optimization of life support systems and their systems reliability

    Get PDF
    The identification, analysis, and optimization of life support systems and subsystems have been investigated. For each system or subsystem that has been considered, the procedure involves the establishment of a set of system equations (or mathematical model) based on theory and experimental evidences; the analysis and simulation of the model; the optimization of the operation, control, and reliability; analysis of sensitivity of the system based on the model; and, if possible, experimental verification of the theoretical and computational results. Research activities include: (1) modeling of air flow in a confined space; (2) review of several different gas-liquid contactors utilizing centrifugal force: (3) review of carbon dioxide reduction contactors in space vehicles and other enclosed structures: (4) application of modern optimal control theory to environmental control of confined spaces; (5) optimal control of class of nonlinear diffusional distributed parameter systems: (6) optimization of system reliability of life support systems and sub-systems: (7) modeling, simulation and optimal control of the human thermal system: and (8) analysis and optimization of the water-vapor eletrolysis cell

    Effect of Dietary Phosphorus on Finishing Steer Performance, Bone Status, and Carcass Maturity

    Get PDF
    Yearling crossbred steers (n = 60; 386 kg) were individually fed in a completely randomized experimental design to determine their P requirement. Treatments were in a factorial arrangement with two levels of Ca (.35 or .70% of DM) and five concentrations of P (.14, .19, .24, .29, or .34% of DM). The finishing diet consisted of 34.5% dry-rolled corn, 22.5% brewers grits, 22.5% corn bran, 7.5% ground corncobs, 5% molasses, 3% fat, and 5% supplement. Supplemental P was provided as monosodium phosphate and Ca as limestone. Ash content was determined on the first phalanx bone from the lower front legs following slaughter, and rib bone breaking strength was determined with an Instron Universal Testing Machine. Carcass maturity and shear force were also evaluated on wholesale rib cuts. Because no interactions between Ca and P levels were detected, only main effects are presented. Daily gain, DMI, and feed efficiency were not affected by dietary P concentration or P intake. Bone ash (g or g/ 100 kg BW) and rib bone breaking strength were also unaffected by dietary P. Feeding .7% Ca decreased (P \u3c &#;.06) ADG and efficiency compared with feeding .35% Ca. Neither dietary Ca nor P had a significant effect on tenderness (shear force), skeletal maturity, or overall maturity. These results indicate that the P requirement for finishing yearlings is .14% of diet DM or less and that supplementing P above levels supplied by basal ingredients in many grain-based finishing diets is not necessary

    Survey of Stormwater BMP Maintenance Practices

    Get PDF
    Many stormwater management manuals and guidance documents have stated the importance and estimated frequency of maintenance for stormwater best management practices (BMPs), but few have documented the actual frequency and intensity of maintenance required to maintain a desired level of performance and efficiency. Increased attention to mass balance, numerical goals, total maximum daily loads (TMDLs), and non-degradation requirements has created the need for more emphasis on BMP maintenance in order to meet permitting and reporting requirements. The purpose of this paper is to advance short and long-term maintenance considerations so as to develop more realistic maintenance plans. To do so, we conducted a national literature search for maintenance costs and developed, distributed, analyzed the results of a detailed municipal public works survey. The specific goals of the survey were to identify and inventory stormwater BMP O&M efforts and costs. Survey questionnaires were sent to 106 cities with 28 responses received. The survey related to the following topics: number of BMPs in the city, frequency of BMP inspections, average staff-hours spent per routine inspection/maintenance, complexity of BMP maintenance, most frequent causes of performance deterioration within BMPs, and cost of non-routine maintenance activities. The results of the survey revealed that most (89%) cities perform routine maintenance once per year or less. Staff-hours per year ranged from one to four hours for most stormwater BMPs and but were significantly more for rain gardens (one to sixteen hours per year) and wetlands (one to nine hours per year). The most common causes of performance deterioration were sediment buildup and litter/debris for most stormwater BMPs. Respondents indicated that the removal of accumulated sediment incurred the largest cost of all BMP maintenance activities
    • …
    corecore