87 research outputs found

    Next-generation sequencing of AV nodal reentrant tachycardia patients identifies broad spectrum of variants in ion channel genes.

    Get PDF
    Atrioventricular nodal reentry tachycardia (AVNRT) is the most common form of regular paroxysmal supraventricular tachycardia. This arrhythmia affects women twice as frequently as men, and is often diagnosed in patients <40 years of age. Familial clustering, early onset of symptoms and lack of structural anomaly indicate involvement of genetic factors in AVNRT pathophysiology. We hypothesized that AVNRT patients have a high prevalence of variants in genes that are highly expressed in the atrioventricular conduction axis of the heart and potentially involved in arrhythmic diseases. Next-generation sequencing of 67 genes was applied to the DNA profile of 298 AVNRT patients and 10 AVNRT family members using HaloPlex Target Enrichment System. In total, we identified 229 variants in 60 genes; 215 missenses, four frame shifts, four codon deletions, three missense and splice sites, two stop-gain variants, and one start-lost variant. Sixty-five of these were not present in the Exome Aggregation Consortium (ExAC) database. Furthermore, we report two AVNRT families with co-segregating variants. Seventy-five of 284 AVNRT patients (26.4%) and three family members to different AVNRT probands had one or more variants in genes affecting the sodium handling. Fifty-four out of 284 AVNRT patients (19.0%) had variants in genes affecting the calcium handling of the heart. We furthermore find a large proportion of variants in the HCN1-4 genes. We did not detect a significant enrichment of rare variants in the tested genes. This could be an indication that AVNRT might be an electrical arrhythmic disease with abnormal sodium and calcium handling

    Traffic-related pollution and asthma prevalence in children. Quantification of associations with nitrogen dioxide.

    Get PDF
    Ambient nitrogen dioxide is a widely available measure of traffic-related air pollution and is inconsistently associated with the prevalence of asthma symptoms in children. The use of this relationship to evaluate the health impact of policies affecting traffic management and traffic emissions is limited by the lack of a concentration-response function based on systematic review and meta-analysis of relevant studies. Using systematic methods, we identified papers containing quantitative estimates for nitrogen dioxide and the 12 month period prevalence of asthma symptoms in children in which the exposure contrast was within-community and dominated by traffic pollution. One estimate was selected from each study according to an a priori algorithm. Odds ratios were standardised to 10 μg/m(3) and summary estimates were obtained using random- and fixed-effects estimates. Eighteen studies were identified. Concentrations of nitrogen dioxide were estimated for the home address (12) and/or school (8) using a range of methods; land use regression (6), study monitors (6), dispersion modelling (4) and interpolation (2). Fourteen studies showed positive associations but only two associations were statistically significant at the 5 % level. There was moderate heterogeneity (I(2) = 32.8 %) and the random-effects estimate for the odds ratio was 1.06 (95 % CI 1.00 to 1.11). There was no evidence of small study bias. Individual studies tended to have only weak positive associations between nitrogen dioxide and asthma prevalence but the summary estimate bordered on statistical significance at the 5 % level. Although small, the potential impact on asthma prevalence could be considerable because of the high level of baseline prevalence in many cities. Whether the association is causal or indicates the effects of a correlated pollutant or other confounders, the estimate obtained by the meta-analysis would be appropriate for estimating impacts of traffic pollution on asthma prevalence

    Ultraviolet radiation shapes seaweed communities

    Get PDF

    Long-Term Exposure to Primary Traffic Pollutants and Lung Function in Children: Cross-Sectional Study and Meta-Analysis.

    Get PDF
    BACKGROUND: There is widespread concern about the possible health effects of traffic-related air pollution. Nitrogen dioxide (NO2) is a convenient marker of primary pollution. We investigated the associations between lung function and current residential exposure to a range of air pollutants (particularly NO2, NO, NOx and particulate matter) in London children. Moreover, we placed the results for NO2 in context with a meta-analysis of published estimates of the association. METHODS AND FINDINGS: Associations between primary traffic pollutants and lung function were investigated in 4884 children aged 9-10 years who participated in the Child Heart and Health Study in England (CHASE). A systematic literature search identified 13 studies eligible for inclusion in a meta-analysis. We combined results from the meta-analysis with the distribution of the values of FEV1 in CHASE to estimate the prevalence of children with abnormal lung function (FEV1<80% of predicted value) expected under different scenarios of NO2 exposure. In CHASE, there were non-significant inverse associations between all pollutants except ozone and both FEV1 and FVC. In the meta-analysis, a 10 μg/m3 increase in NO2 was associated with an 8 ml lower FEV1 (95% CI: -14 to -1 ml; p: 0.016). The observed effect was not modified by a reported asthma diagnosis. On the basis of these results, a 10 μg/m3 increase in NO2 level would translate into a 7% (95% CI: 4% to 12%) increase of the prevalence of children with abnormal lung function. CONCLUSIONS: Exposure to traffic pollution may cause a small overall reduction in lung function and increase the prevalence of children with clinically relevant declines in lung function

    Genome-Wide Gene Expression Analysis in Response to Organophosphorus Pesticide Chlorpyrifos and Diazinon in C. elegans

    Get PDF
    Organophosphorus pesticides (OPs) were originally designed to affect the nervous system by inhibiting the enzyme acetylcholinesterase, an important regulator of the neurotransmitter acetylcholine. Over the past years evidence is mounting that these compounds affect many other processes. Little is known, however, about gene expression responses against OPs in the nematode Caenorhabditis elegans. This is surprising because C. elegans is extensively used as a model species in toxicity studies. To address this question we performed a microarray study in C. elegans which was exposed for 72 hrs to two widely used Ops, chlorpyrifos and diazinon, and a low dose mixture of these two compounds. Our analysis revealed transcriptional responses related to detoxification, stress, innate immunity, and transport and metabolism of lipids in all treatments. We found that for both compounds as well as in the mixture, these processes were regulated by different gene transcripts. Our results illustrate intense, and unexpected crosstalk between gene pathways in response to chlorpyrifos and diazinon in C. elegans

    Targeting the NG2/CSPG4 Proteoglycan Retards Tumour Growth and Angiogenesis in Preclinical Models of GBM and Melanoma

    Get PDF
    Aberrant expression of the progenitor marker Neuron-glia 2 (NG2/CSPG4) or melanoma proteoglycan on cancer cells and angiogenic vasculature is associated with an aggressive disease course in several malignancies including glioblastoma multiforme (GBM) and melanoma. Thus, we investigated the mechanism of NG2 mediated malignant progression and its potential as a therapeutic target in clinically relevant GBM and melanoma animal models. Xenografting NG2 overexpressing GBM cell lines resulted in increased growth rate, angiogenesis and vascular permeability compared to control, NG2 negative tumours. The effect of abrogating NG2 function was investigated after intracerebral delivery of lentivirally encoded shRNAs targeting NG2 in patient GBM xenografts as well as in established subcutaneous A375 melanoma tumours. NG2 knockdown reduced melanoma proliferation and increased apoptosis and necrosis. Targeting NG2 in two heterogeneous GBM xenografts significantly reduced tumour growth and oedema levels, angiogenesis and normalised vascular function. Vascular normalisation resulted in increased tumour invasion and decreased apoptosis and necrosis. We conclude that NG2 promotes tumour progression by multiple mechanisms and represents an amenable target for cancer molecular therapy

    Mammalian BTBD12 (SLX4) Protects against Genomic Instability during Mammalian Spermatogenesis

    Get PDF
    The mammalian ortholog of yeast Slx4, BTBD12, is an ATM substrate that functions as a scaffold for various DNA repair activities. Mutations of human BTBD12 have been reported in a new sub-type of Fanconi anemia patients. Recent studies have implicated the fly and worm orthologs, MUS312 and HIM-18, in the regulation of meiotic crossovers arising from double-strand break (DSB) initiating events and also in genome stability prior to meiosis. Using a Btbd12 mutant mouse, we analyzed the role of BTBD12 in mammalian gametogenesis. BTBD12 localizes to pre-meiotic spermatogonia and to meiotic spermatocytes in wildtype males. Btbd12 mutant mice have less than 15% normal spermatozoa and are subfertile. Loss of BTBD12 during embryogenesis results in impaired primordial germ cell proliferation and increased apoptosis, which reduces the spermatogonial pool in the early postnatal testis. During prophase I, DSBs initiate normally in Btbd12 mutant animals. However, DSB repair is delayed or impeded, resulting in persistent γH2AX and RAD51, and the choice of repair pathway may be altered, resulting in elevated MLH1/MLH3 focus numbers at pachynema. The result is an increase in apoptosis through prophase I and beyond. Unlike yeast Slx4, therefore, BTBD12 appears to function in meiotic prophase I, possibly during the recombination events that lead to the production of crossovers. In line with its expected regulation by ATM kinase, BTBD12 protein is reduced in the testis of Atm−/− males, and Btbd12 mutant mice exhibit increased genomic instability in the form of elevated blood cell micronucleus formation similar to that seen in Atm−/− males. Taken together, these data indicate that BTBD12 functions throughout gametogenesis to maintain genome stability, possibly by co-ordinating repair processes and/or by linking DNA repair events to the cell cycle via ATM

    Bioinformatic analyses identifies novel protein-coding pharmacogenomic markers associated with paclitaxel sensitivity in NCI60 cancer cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Paclitaxel is a microtubule-stabilizing drug that has been commonly used in treating cancer. Due to genetic heterogeneity within patient populations, therapeutic response rates often vary. Here we used the NCI60 panel to identify SNPs associated with paclitaxel sensitivity. Using the panel's GI50 response data available from Developmental Therapeutics Program, cell lines were categorized as either sensitive or resistant. PLINK software was used to perform a genome-wide association analysis of the cellular response to paclitaxel with the panel's SNP-genotype data on the Affymetrix 125 k SNP array. FastSNP software helped predict each SNP's potential impact on their gene product. mRNA expression differences between sensitive and resistant cell lines was examined using data from BioGPS. Using Haploview software, we investigated for haplotypes that were more strongly associated with the cellular response to paclitaxel. Ingenuity Pathway Analysis software helped us understand how our identified genes may alter the cellular response to paclitaxel.</p> <p>Results</p> <p>43 SNPs were found significantly associated (FDR < 0.005) with paclitaxel response, with 10 belonging to protein-coding genes (<it>CFTR</it>, <it>ROBO1</it>, <it>PTPRD</it>, <it>BTBD12</it>, <it>DCT</it>, <it>SNTG1</it>, <it>SGCD</it>, <it>LPHN2</it>, <it>GRIK1</it>, <it>ZNF607</it>). SNPs in <it>GRIK1</it>, <it>DCT</it>, <it>SGCD </it>and <it>CFTR </it>were predicted to be intronic enhancers, altering gene expression, while SNPs in <it>ZNF607 </it>and <it>BTBD12 </it>cause conservative missense mutations. mRNA expression analysis supported these findings as <it>GRIK1</it>, <it>DCT</it>, <it>SNTG1</it>, <it>SGCD </it>and <it>CFTR </it>showed significantly (p < 0.05) increased expression among sensitive cell lines. Haplotypes found in <it>GRIK1, SGCD, ROBO1, LPHN2</it>, and <it>PTPRD </it>were more strongly associated with response than their individual SNPs.</p> <p>Conclusions</p> <p>Our study has taken advantage of available genotypic data and its integration with drug response data obtained from the NCI60 panel. We identified 10 SNPs located within protein-coding genes that were not previously shown to be associated with paclitaxel response. As only five genes showed differential mRNA expression, the remainder would not have been detected solely based on expression data. The identified haplotypes highlight the role of utilizing SNP combinations within genomic loci of interest to improve the risk determination associated with drug response. These genetic variants represent promising biomarkers for predicting paclitaxel response and may play a significant role in the cellular response to paclitaxel.</p

    Efficacy of aerobic exercise and a prudent diet for improving selected lipids and lipoproteins in adults: a meta-analysis of randomized controlled trials

    Get PDF
    Background Studies addressing the effects of aerobic exercise and a prudent diet on lipid and lipoprotein concentrations in adults have reached conflicting conclusions. The purpose of this study was to determine the effects of aerobic exercise combined with a prudent diet on lipid and lipoprotein concentrations in adults. Methods Studies were located by searching nine electronic databases, cross-referencing, and expert review. Two independent reviewers selected studies that met the following criteria: (1) randomized controlled trials, (2) aerobic exercise combined with diet recommendations (saturated/trans fat intake less than 10% of total calories and cholesterol less than 300 mg/day and/or fiber intake ≥25 g/day in women and ≥35 grams per day in men), (3) intervention ≥4 weeks, (4) humans ≥18 years of age, (5) published studies, including dissertations and Master\u27s theses, (6) studies published in any language, (7) studies published between January 1, 1955 and May 1, 2009, (8) assessment of one or more of the following lipid and lipoprotein concentrations: total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), ratio of TC to HDL-C, non-HDL-C, low-density lipoprotein cholesterol (LDL-C) and triglycerides (TG). Two reviewers independently extracted all data. Random-effects models that account for heterogeneity and 95% confidence intervals were used to pool findings. Results Of the 1,401 citations reviewed, six studies representing 16 groups (8 intervention, 8 control) and up to 559 men and women (282 intervention, 277 control) met the criteria for analysis. Statistically significant intervention minus control reductions were found for TC (-15.5 mg/dl, 95% CI, -20.3 to -10.7), TC:HDL-C (-0.4 mg/dl, 95% CI, -0.7 to -0.2), LDL-C (-9.2 mg/dl, 95% CI, -12.7 to -5.8) and TG (-10.6 mg/dl, 95% CI, -17.2 to -4.0) but not HDL-C (-0.5 mg/dl, 95% CI, -4.0 to 3.1). Changes were equivalent to reductions of 7.5%, 6.6%, 7.2% and 18.2% respectively, for TC, TC:HDL-C, LDL-C and TG. Because of missing variance statistics, non-HDL-C was excluded. Conclusions Aerobic exercise combined with a prudent diet is highly efficacious for improving TC, TC:HDL-C, LDL-C and TG, but not HDL-C concentrations, in adults. However, additional studies are needed, including effectiveness studies using intention-to-treat analysis
    corecore