2,253 research outputs found
Young neutron stars with soft gamma ray emission and anomalous X-ray pulsar
The observational properties of Soft Gamma Repeaters and Ano\-malous X-ray
Pulsars (SGR/AXP) indicate to necessity of the energy source different from a
rotational energy of a neutron star. The model, where the source of the energy
is connected with a magnetic field dissipation in a highly magnetized neutron
star (magnetar) is analyzed. Some observational inconsistencies are indicated
for this interpretation. The alternative energy source, connected with the
nuclear energy of superheavy nuclei stored in the nonequilibrium layer of low
mass neutron star is discussed.Comment: 29 pages, 13 figures, Springer International Publishing Switzerland
2016 A.W. Alsabti, P. Murdin (eds.), Handbook of Supernova
Recommended from our members
State of the California current 2013-14: El niño looming
In 2013, the California current was dominated by strong coastal upwelling and high productivity. Indices of total cumulative upwelling for particular coastal locations reached some of the highest values on record. Chlorophyll a levels were high throughout spring and summer. Catches of upwelling-related fish species were also high. After a moderate drop in upwelling during fall 2013, the California current system underwent a major change in phase. Three major basin-scale indicators, the PDO, the NPGO, and the ENSO-MEI, all changed phase at some point during the winter of 2013/14. The PDO changed to positive values, indicative of warmer waters in the North Pacific; the NPGO to negative values, indicative of lower productivity along the coast; and the MEI to positive values, indicative of an oncoming El Niño. Whereas the majority of the California Current system appears to have transitioned to an El Niño state by August 2014, based on decreases in upwelling and chlorophyll a concentration, and increases in SST, there still remained pockets of moderate upwelling, cold water, and high chlorophyll a biomass at various central coast locations, unlike patterns seen during the more major El Niños (e.g., the 97-98 event). Catches of rockfish, market squid, euphausiids, and juvenile sanddab remained high along the central coast, whereas catches of sardine and anchovy were low throughout the CCS. 2014 appears to be heading towards a moderate El Niño state, with some remaining patchy regions of upwellingdriven productivity along the coast. Superimposed on this pattern, three major regions have experienced possibly non-El Niño-related warming since winter: the Bering Sea, the Gulf of Alaska, and offshore of southern California. It is unclear how this warming may interact with the predicted El Niño, but the result will likely be reduced growth or reproduction for many key fisheries species
Examining the Decline in the C~IV Content of the Universe over 4.3 ≲ z ≲ 6.3 using the E-XQR-30 Sample
Intervening C iv absorbers are key tracers of metal-enriched gas in galaxy haloes over cosmic time. Previous studies suggest that the C iv cosmic mass density ([Math Processing Error]) decreases slowly over 1.5 [Math Processing Error] 5 before declining rapidly at z ≳ 5, but the cause of this downturn is poorly understood. We characterize the [Math Processing Error] evolution over 4.3 ≲ z ≲ 6.3 using 260 absorbers found in 42 XSHOOTER spectra of z ∼ 6 quasars, of which 30 come from the ESO Large Program XQR-30. The large sample enables us to robustly constrain the rate and timing of the downturn. We find that [Math Processing Error] decreases by a factor of 4.8 ± 2.0 over the ∼300 Myr interval between z ∼ 4.7 and ∼5.8. The slope of the column density (log N) distribution function does not change, suggesting that C iv absorption is suppressed approximately uniformly across 13.2 ≤ log N/cm−2 < 15.0. Assuming that the carbon content of galaxy haloes evolves as the integral of the cosmic star formation rate density (with some delay due to stellar lifetimes and outflow travel times), we show that chemical evolution alone could plausibly explain the fast decline in [Math Processing Error] over 4.3 ≲ z ≲ 6.3. However, the C iv/C ii ratio decreases at the highest redshifts, so the accelerated decline in [Math Processing Error] at z ≳ 5 may be more naturally explained by rapid changes in the gas ionization state driven by evolution of the UV background towards the end of hydrogen reionization
Self-Organization, Layered Structure, and Aggregation Enhance Persistence of a Synthetic Biofilm Consortium
Microbial consortia constitute a majority of the earth’s biomass, but little is known about how these cooperating
communities persist despite competition among community members. Theory suggests that non-random spatial structures
contribute to the persistence of mixed communities; when particular structures form, they may provide associated
community members with a growth advantage over unassociated members. If true, this has implications for the rise and
persistence of multi-cellular organisms. However, this theory is difficult to study because we rarely observe initial instances
of non-random physical structure in natural populations. Using two engineered strains of Escherichia coli that constitute a
synthetic symbiotic microbial consortium, we fortuitously observed such spatial self-organization. This consortium forms a
biofilm and, after several days, adopts a defined layered structure that is associated with two unexpected, measurable
growth advantages. First, the consortium cannot successfully colonize a new, downstream environment until it selforganizes
in the initial environment; in other words, the structure enhances the ability of the consortium to survive
environmental disruptions. Second, when the layered structure forms in downstream environments the consortium
accumulates significantly more biomass than it did in the initial environment; in other words, the structure enhances the
global productivity of the consortium. We also observed that the layered structure only assembles in downstream
environments that are colonized by aggregates from a previous, structured community. These results demonstrate roles for
self-organization and aggregation in persistence of multi-cellular communities, and also illustrate a role for the techniques
of synthetic biology in elucidating fundamental biological principles
Biological in-vivo measurement of dose distribution in patients' lymphocytes by gamma-H2AX immunofluorescence staining: 3D conformal- vs. step-and-shoot IMRT of the prostate gland
<p>Abstract</p> <p>Background</p> <p>Different radiation-techniques in treating local staged prostate cancer differ in their dose- distribution. Physical phantom measurements indicate that for 3D, less healthy tissue is exposed to a relatively higher dose compared to SSIMRT. The purpose is to substantiate a dose distribution in lymphocytes <it>in-vivo </it>and to discuss the possibility of comparing it to the physical model of total body dose distribution.</p> <p>Methods</p> <p>For each technique (3D and SSIMRT), blood was taken from 20 patients before and 10 min after their first fraction of radiotherapy. The isolated leukocytes were fixed 2 hours after radiation. DNA double-strand breaks (DSB) in lymphocytes' nuclei were stained immunocytochemically using the gamma-H2AX protein. Gamma-H2AX foci inside each nucleus were counted in 300 irradiated as well as 50 non-irradiated lymphocytes per patient. In addition, lymphocytes of 5 volunteer subjects were irradiated externally at different doses and processed under same conditions as the patients' lymphocytes in order to generate a calibration-line. This calibration-line assigns dose-value to mean number of gamma-H2AX foci/ nucleus. So the dose distributions in patients' lymphocytes were determined regarding to the gamma-H2AX foci distribution. With this information a cumulative dose-lymphocyte-histogram (DLH) was generated. Visualized distribution of gamma-H2AX foci, correspondingly dose per nucleus, was compared to the technical dose-volume-histogram (DVH), related to the whole body-volume.</p> <p>Results</p> <p>Measured <it>in-vivo </it>(DLH) and according to the physical treatment-planning (DVH), more lymphocytes resulted with low-dose exposure (< 20% of the applied dose) and significantly fewer lymphocytes with middle-dose exposure (30%-60%) during Step-and-Shoot-IMRT, compared to conventional 3D conformal radiotherapy. The high-dose exposure (> 80%) was equal in both radiation techniques. The mean number of gamma-H2AX foci per lymphocyte was 0.49 (3D) and 0.47 (SSIMRT) without significant difference.</p> <p>Conclusions</p> <p><it>In-vivo </it>measurement of the dose distribution within patients' lymphocytes can be performed by detecting gamma-H2AX foci. In case of 3D and SSIMRT, the results of this method correlate with the physical calculated total body dose-distribution, but cannot be interpreted unrestrictedly due to the blood circulation. One possible application of the present method could be in radiation-protection for <it>in-vivo </it>dose estimation after accidental exposure to radiation.</p
Recommended from our members
State of the California current 2012-13: No such thing as an “average” year
This report reviews the state of the California Current System (CCS) between winter 2012 and spring 2013, and includes observations from Washington State to Baja California. During 2012, large-scale climate modes indicated the CCS remained in a cool, productive phase present since 2007. The upwelling season was delayed north of 42°N, but regions to the south, especially 33° to 36°N, experienced average to above average upwelling that persisted throughout the summer. Contrary to the indication of high production suggested by the climate indices, chlorophyll observed from surveys and remote sensing was below average along much of the coast. As well, some members of the forage assemblages along the coast experienced low abundances in 2012 surveys. Specifically, the concentrations of all lifestages observed directly or from egg densities of Pacific sardine, Sardinops sagax, and northern anchovy, Engraulis mordax, were less than previous years’ survey estimates. However, 2013 surveys and observations indicate an increase in abundance of northern anchovy. During winter 2011/2012, the increased presence of northern copepod species off northern California was consistent with stronger southward transport. Krill and small-fraction zooplankton abundances, where examined, were generally above average. North of 42°N, salps returned to typical abundances in 2012 after greater observed concentrations in 2010 and 2011. In contrast, salp abundance off central and southern California increased after a period of southward transport during winter 2011/2012. Reproductive success of piscivorous Brandt’s cormorant, Phalacrocorax penicillatus, was reduced while planktivorous Cassin’s auklet, Ptychoramphus aleuticus was elevated. Differences between the productivity of these two seabirds may be related to the available forage assemblage observed in the surveys. California sea lion pups from San Miguel Island were undernourished resulting in a pup mortality event perhaps in response to changes in forage availability. Limited biological data were available for spring 2013, but strong winter upwelling coastwide indicated an early spring transition, with the strong upwelling persisting into early summer
Understanding plant invasions: An example of working with citizen scientists to collect environmental data
Citizen science programs are useful tools for collecting important environmental science data. To ensure data quality, however, it must be shown that data collected by volunteers can produce reliable results. We engaged 143 volunteers over four years to map and estimate abundance of invasive plants in New York and New Jersey parklands. We found that off trail abundance of only a few of our targeted invasive species were positively correlated with on trail abundance. Our results support that citizen science programs can be a useful and sometimes a much needed addition to environmental science protocols
Modulation of Transmission Spectra of Anodized Alumina Membrane Distributed Bragg Reflector by Controlling Anodization Temperature
We have successfully prepared anodized alumina membrane distributed Bragg reflector (DBR) using electrochemical anodization method. The transmission peak of this distributed Bragg reflector could be easily and effectively modulated to cover almost any wavelength range of the whole visible spectrum by adjusting anodization temperature
Models of Star-Planet Magnetic Interaction
Magnetic interactions between a planet and its environment are known to lead
to phenomena such as aurorae and shocks in the solar system. The large number
of close-in exoplanets that were discovered triggered a renewed interest in
magnetic interactions in star-planet systems. Multiple other magnetic effects
were then unveiled, such as planet inflation or heating, planet migration,
planetary material escape, and even modification of the host star properties.
We review here the recent efforts in modelling and understanding magnetic
interactions between stars and planets in the context of compact systems. We
first provide simple estimates of the effects of magnetic interactions and then
detail analytical and numerical models for different representative scenarii.
We finally lay out a series of future developments that are needed today to
better understand and constrain these fascinating interactions.Comment: 23 pages, 10 figures, accepted as a chapter in the Handbook of
Exoplanet
- …