1,976 research outputs found

    Application of nuclear volume measurements to comprehend the cell cycle in root-knot nematode-induced giant cells.

    Get PDF
    Made available in DSpace on 2017-08-20T10:40:09Z (GMT). No. of bitstreams: 1 fpls0800961.pdf: 6060991 bytes, checksum: de09cc3d9010093292805dc9ae37534a (MD5) Previous issue date: 2017-08-1

    Exploiting cell cycle inhibitor genes of the KRP family to control root-knot nematode induced feeding sites in plants.

    Get PDF
    Made available in DSpace on 2018-08-11T00:42:06Z (GMT). No. of bitstreams: 1 Coelhoetal2017PlantCellampEnvironment.pdf: 5492267 bytes, checksum: 547162c264fe8e6c301bf52439d7d29d (MD5) Previous issue date: 2017-08-11bitstream/item/162650/1/Coelho-et-al-2017-Plant-Cell-amp-Environment.pd

    Design and Construction of Multigenic Constructs for Plant Biotechnology Using the GoldenBraid Cloning Strategy

    Full text link
    GoldenBraid (GB) is an iterative and standardized DNA assembling system specially designed for Multigene Engineering in Plant Synthetic Biology. GB is based on restriction–ligation reactions using type IIS restriction enzymes. GB comprises a collection of standard DNA pieces named “GB parts” and a set of destination plasmids (pDGBs) that incorporate the multipartite assembly of standardized DNA parts. GB reactions are extremely efficient: two transcriptional units (TUs) can be assembled from several basic GBparts in one T-DNA less than 24 h. Moreover, larger assemblies comprising 4–5 TUs are routinely built in less than 2 working weeks. Here we provide a detailed view of the GB methodology. As a practical example, a Bimolecular Fluorescence Complementation construct comprising four TUs in a 12 kb DNA fragment is presented.Sarrion-Perdigones, A.; Palací, J.; Granell Richart, A.; Orzáez Calatayud, DV. (2014). Design and Construction of Multigenic Constructs for Plant Biotechnology Using the GoldenBraid Cloning Strategy. Methods in Molecular Biology. 1116:133-151. doi:10.1007/978-1-62703-764-8_10S1331511116Haseloff J, Ajioka J (2009) Synthetic biology, history, challenges and prospects. J R Soc Interface 6(Suppl 4):S389–S391Check E (2005) Synthetic biology, designs on life. Nature 438:417–418Kosuri S, Eroshenko N, LeProust EM et al (2010) Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips. Nat Biotechnol 28:1295–1299Ellis T, Adie T, Baldwin GS (2011) DNA assembly for synthetic biology, from parts to pathways and beyond. Integr Biol 3:109–118Gibson DG, Young L, Chuang R-Y et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6: 343–345Gibson DG, Glass JI, Lartigue C et al (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329:52–56Sarrion-Perdigones A, Falconi EE, Zandalinas SI et al (2011) GoldenBraid, an iterative cloning system for standardized assembly of reusable genetic modules. PLoS One 6:e21622Sarrion-Perdigones A, Vilar-Vazquez M et al (2013) GoldenBraid2.0, A comprehensive DNA assembly framework for plant synthetic biology. Plant Physiol 162:1618–1631Engler C, Gruetzner R, Kandzia R (2009) Golden gate shuffling, a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One 4:e5553Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS One 3:e3647Bracha-Drori K, Shichrur K, Katz A et al (2004) Detection of protein-protein interactions in plants using bimolecular fluorescence complementation. Plant J 40:419–427Smaczniak C, Immink RG, Muino JM et al (2012) Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development. Proc Natl Acad Sci U S A 109:1560–1565de Folter S, Immink RG, Kieffer M et al (2005) Comprehensive interaction map of the Arabidopsis MADS Box transcription factors. Plant Cell 17:1424–1433Lorenz WW, McCann RO, Longiaru M et al (1991) Isolation and expression of a cDNA encoding Renilla reniformis luciferase. Proc Natl Acad Sci U S A 88:4438–4442Voinnet O, Pinto YM, Baulcombe DC (1999) Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc Natl Acad Sci U S A 96: 14147–14152Hellens RP, Edwards EA, Leyland NR et al (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42:819–832Butelli E, Titta L, Giorgio M et al (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol 26: 1301–1308Kapila J, DeRycke R, VanMontagu M et al (1997) An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122:101–10

    Knock-down of heat-shock protein 90 and isocitrate lyase gene expression reduced root-knot nematode reproduction.

    Get PDF
    Made available in DSpace on 2018-07-19T01:01:42Z (GMT). No. of bitstreams: 1 PHYTO09140237R.pdf: 775087 bytes, checksum: 95edcbc8a1ffecb0dac1b523acf37dd6 (MD5) Previous issue date: 2015-09-14bitstream/item/129546/1/PHYTO-09-14-0237-R.pd

    A Multiwell Platform for Studying Stiffness-Dependent Cell Biology

    Get PDF
    Adherent cells are typically cultured on rigid substrates that are orders of magnitude stiffer than their tissue of origin. Here, we describe a method to rapidly fabricate 96 and 384 well platforms for routine screening of cells in tissue-relevant stiffness contexts. Briefly, polyacrylamide (PA) hydrogels are cast in glass-bottom plates, functionalized with collagen, and sterilized for cell culture. The Young's modulus of each substrate can be specified from 0.3 to 55 kPa, with collagen surface density held constant over the stiffness range. Using automated fluorescence microscopy, we captured the morphological variations of 7 cell types cultured across a physiological range of stiffness within a 384 well plate. We performed assays of cell number, proliferation, and apoptosis in 96 wells and resolved distinct profiles of cell growth as a function of stiffness among primary and immortalized cell lines. We found that the stiffness-dependent growth of normal human lung fibroblasts is largely invariant with collagen density, and that differences in their accumulation are amplified by increasing serum concentration. Further, we performed a screen of 18 bioactive small molecules and identified compounds with enhanced or reduced effects on soft versus rigid substrates, including blebbistatin, which abolished the suppression of lung fibroblast growth at 1 kPa. The ability to deploy PA gels in multiwell plates for high throughput analysis of cells in tissue-relevant environments opens new opportunities for the discovery of cellular responses that operate in specific stiffness regimes

    Transcriptome analysis in cotton Boll Weevil (Anthonomus grandis) and RNA interference in insect pests.

    Get PDF
    Cotton plants are subjected to the attack of several insect pests. In Brazil, the cotton boll weevil, Anthonomus grandis, is the most important cotton pest. The use of insecticidal proteins and gene silencing by interference RNA (RNAi) as techniques for insect control are promising strategies, which has been applied in the last few years. For this insect, there are not much available molecular information on databases. Using 454-pyrosequencing methodology, the transcriptome of all developmental stages of the insect pest, A. grandis, was analyzed. The A. grandis transcriptome analysis resulted in more than 500.000 reads and a data set of high quality 20,841 contigs. After sequence assembly and annotation, around 10,600 contigs had at least one BLAST hit against NCBI non-redundant protein database and 65.7% was similar to Tribolium castaneum sequences. A comparison of A. grandis, Drosophila melanogaster and Bombyx mori protein families’ data showed higher similarity to dipteran than to lepidopteran sequences. Several contigs of genes encoding proteins involved in RNAi mechanism were found. PAZ Domains sequences extracted from the transcriptome showed high similarity and conservation for the most important functional and structural motifs when compared to PAZ Domains from 5 species. Two SID-like contigs were phylogenetically analyzed and grouped with T. castaneum SID-like proteins. No RdRP gene was found. A contig matching chitin synthase 1 was mined from the transcriptome. dsRNA microinjection of a chitin synthase gene to A. grandis female adults resulted in normal oviposition of unviable eggs and malformed alive larvae that were unable to develop in artificial diet. This is the first study that characterizes the transcriptome of the coleopteran, A. grandis. A new and representative transcriptome database for this insect pest is now available. All data support the state of the art of RNAi mechanism in insects

    Energy Spectra of Elemental Groups of Cosmic Rays: Update on the KASCADE Unfolding Analysis

    Get PDF
    The KASCADE experiment measures extensive air showers induced by cosmic rays in the energy range around the so-called knee. The data of KASCADE have been used in a composition analysis showing the knee at 3-5 PeV to be caused by a steepening in the light-element spectra. Since the applied unfolding analysis depends crucially on simulations of air showers, different high energy hadronic interaction models (QGSJet and SIBYLL) were used. The results have shown a strong dependence of the relative abundance of the individual mass groups on the underlying model. In this update of the analysis we apply the unfolding method with a different low energy interaction model (FLUKA instead of GHEISHA) in the simulations. While the resulting individual mass group spectra do not change significantly, the overall description of the measured data improves by using the FLUKA model. In addition data in a larger range of zenith angle are analysed. The new results are completely consistent, i.e. there is no hint to any severe problem in applying the unfolding analysis method to KASCADE data.Comment: accepted for publication in Astroparticle Physic
    corecore