2,544 research outputs found

    Association between stall surface and some animal welfare measurements in freestall dairy herds using recycled manure solids for bedding

    Get PDF
    The objective of this cross-sectional study was to investigate the association between stall surface and some animal welfare measurements in upper Midwest US dairy operations using recycled manure solids as bedding material. The study included 34 dairy operations with herd sizes ranging from 130 to 3,700 lactating cows. Forty-five percent of the herds had mattresses and 55% had deep-bedded stalls. Farms were visited once between July and October 2009. At the time of visit, at least 50% of the cows in each lactating pen were scored for locomotion, hygiene, and hock lesions. On-farm herd records were collected for the entire year and used to investigate mortality, culling, milk production, and mastitis incidence. Stall surface was associated with lameness and hock lesion prevalence. Lameness prevalence (locomotion score ≥3 on a 1 to 5 scale) was lower in deep-bedded freestalls (14.4%) than freestalls with mattresses (19.8%). Severe lameness prevalence (locomotion score ≥4) was also lower for cows housed in deep-bedded freestalls (3.6%) than for cows housed in freestalls with mattresses (5.9%). In addition, the prevalence of hock lesions (hock lesion scores ≥2 on a 1 to 3 scale, with 1 = no lesion, 2 = hair loss or mild lesion, and 3 = swelling or severe lesion) and severe hock lesions (hock lesion score = 3) was lower in herds with deep-bedded freestalls (49.4%; 6.4%) than in herds with mattresses (67.3%; 13.2%). Herd turnover rates were not associated with stall surface; however, the percentage of removals due to voluntary (low milk production, disposition, and dairy) and involuntary (death, illness, injury, and reproductive) reasons was different between deep-bedded and mattress-based freestalls. Voluntary removals averaged 16% of all herd removals in deep-bedded herds, whereas in mattress herds, these removals were 8%. Other welfare measurements such as cow hygiene, mortality rate, mastitis incidence, and milk production were not associated with stall surface

    Spectral determinants and zeta functions of Schr\"odinger operators on metric graphs

    Full text link
    A derivation of the spectral determinant of the Schr\"odinger operator on a metric graph is presented where the local matching conditions at the vertices are of the general form classified according to the scheme of Kostrykin and Schrader. To formulate the spectral determinant we first derive the spectral zeta function of the Schr\"odinger operator using an appropriate secular equation. The result obtained for the spectral determinant is along the lines of the recent conjecture.Comment: 16 pages, 2 figure

    Observation of mesoscopic crystalline structures in a two-dimensional Rydberg gas

    Get PDF
    The ability to control and tune interactions in ultracold atomic gases has paved the way towards the realization of new phases of matter. Whereas experiments have so far achieved a high degree of control over short-ranged interactions, the realization of long-range interactions would open up a whole new realm of many-body physics and has become a central focus of research. Rydberg atoms are very well-suited to achieve this goal, as the van der Waals forces between them are many orders of magnitude larger than for ground state atoms. Consequently, the mere laser excitation of ultracold gases can cause strongly correlated many-body states to emerge directly when atoms are transferred to Rydberg states. A key example are quantum crystals, composed of coherent superpositions of different spatially ordered configurations of collective excitations. Here we report on the direct measurement of strong correlations in a laser excited two-dimensional atomic Mott insulator using high-resolution, in-situ Rydberg atom imaging. The observations reveal the emergence of spatially ordered excitation patterns in the high-density components of the prepared many-body state. They have random orientation, but well defined geometry, forming mesoscopic crystals of collective excitations delocalised throughout the gas. Our experiment demonstrates the potential of Rydberg gases to realise exotic phases of matter, thereby laying the basis for quantum simulations of long-range interacting quantum magnets.Comment: 10 pages, 7 figure

    Light-cone-like spreading of correlations in a quantum many-body system

    Get PDF
    How fast can correlations spread in a quantum many-body system? Based on the seminal work by Lieb and Robinson, it has recently been shown that several interacting many-body systems exhibit an effective light cone that bounds the propagation speed of correlations. The existence of such a "speed of light" has profound implications for condensed matter physics and quantum information, but has never been observed experimentally. Here we report on the time-resolved detection of propagating correlations in an interacting quantum many-body system. By quenching a one-dimensional quantum gas in an optical lattice, we reveal how quasiparticle pairs transport correlations with a finite velocity across the system, resulting in an effective light cone for the quantum dynamics. Our results open important perspectives for understanding relaxation of closed quantum systems far from equilibrium as well as for engineering efficient quantum channels necessary for fast quantum computations.Comment: 7 pages, 5 figures, 2 table

    Dielectric properties of Granodiorite partially saturated with water and its correlation to the detection of seismic electric signals

    Full text link
    Transient electric signals emitted prior to earthquake occurrence are recorded at certain sites in the Earth's crust termed sensitive. These field observations enforce the laboratory investigation of the dielectric response of rocks forming these localities. The dielectric relaxation of granodiorite rock coming from such a sensitive locality (Keratea, Greece) reveals, through complex impedance spectroscopy, that the activation volume for relaxation of this rock is negative which so far has been reported only rarely. This result, however, supports a theoretical model on the pre-seismic electric signals and is likely to be correlated with the sensitivity of the site and hence with the selectivity

    Using Synchronic and Diachronic Relations for Summarizing Multiple Documents Describing Evolving Events

    Full text link
    In this paper we present a fresh look at the problem of summarizing evolving events from multiple sources. After a discussion concerning the nature of evolving events we introduce a distinction between linearly and non-linearly evolving events. We present then a general methodology for the automatic creation of summaries from evolving events. At its heart lie the notions of Synchronic and Diachronic cross-document Relations (SDRs), whose aim is the identification of similarities and differences between sources, from a synchronical and diachronical perspective. SDRs do not connect documents or textual elements found therein, but structures one might call messages. Applying this methodology will yield a set of messages and relations, SDRs, connecting them, that is a graph which we call grid. We will show how such a grid can be considered as the starting point of a Natural Language Generation System. The methodology is evaluated in two case-studies, one for linearly evolving events (descriptions of football matches) and another one for non-linearly evolving events (terrorist incidents involving hostages). In both cases we evaluate the results produced by our computational systems.Comment: 45 pages, 6 figures. To appear in the Journal of Intelligent Information System

    The Berry-Keating operator on L^2(\rz_>, x) and on compact quantum graphs with general self-adjoint realizations

    Full text link
    The Berry-Keating operator H_{\mathrm{BK}}:= -\ui\hbar(x\frac{ \phantom{x}}{ x}+{1/2}) [M. V. Berry and J. P. Keating, SIAM Rev. 41 (1999) 236] governing the Schr\"odinger dynamics is discussed in the Hilbert space L^2(\rz_>, x) and on compact quantum graphs. It is proved that the spectrum of HBKH_{\mathrm{BK}} defined on L^2(\rz_>, x) is purely continuous and thus this quantization of HBKH_{\mathrm{BK}} cannot yield the hypothetical Hilbert-Polya operator possessing as eigenvalues the nontrivial zeros of the Riemann zeta function. A complete classification of all self-adjoint extensions of HBKH_{\mathrm{BK}} acting on compact quantum graphs is given together with the corresponding secular equation in form of a determinant whose zeros determine the discrete spectrum of HBKH_{\mathrm{BK}}. In addition, an exact trace formula and the Weyl asymptotics of the eigenvalue counting function are derived. Furthermore, we introduce the "squared" Berry-Keating operator HBK2:=−x22xx2−2xxx−1/4H_{\mathrm{BK}}^2:= -x^2\frac{ ^2\phantom{x}}{ x^2}-2x\frac{ \phantom{x}}{ x}-{1/4} which is a special case of the Black-Scholes operator used in financial theory of option pricing. Again, all self-adjoint extensions, the corresponding secular equation, the trace formula and the Weyl asymptotics are derived for HBK2H_{\mathrm{BK}}^2 on compact quantum graphs. While the spectra of both HBKH_{\mathrm{BK}} and HBK2H_{\mathrm{BK}}^2 on any compact quantum graph are discrete, their Weyl asymptotics demonstrate that neither HBKH_{\mathrm{BK}} nor HBK2H_{\mathrm{BK}}^2 can yield as eigenvalues the nontrivial Riemann zeros. Some simple examples are worked out in detail.Comment: 33p

    Negative activation volume for dielectric relaxation in hydrated rocks

    Full text link
    Negative defect activation volumes are extremely rare in solids. Here, we report for the first time that this holds in a couple of hydrated rocks for dielectric relaxation by exploring the complex impedance spectra at various pressures and temperatures. The present findings mean that the relaxation time of the relevant relaxation mechanisms decreases upon increasing pressure, thus it may become too short at higher pressure and hence lead to the emission of transient electric signals before fracture. This may constitute the long-standing laboratory confirmation for the explanation of the generation of electric signals prior to an earthquake, as recently pointed out by Uyeda et al [Tectonophysics 470 (2009) 205-213]

    Absence of sign problem in two-dimensional N=(2,2) super Yang-Mills on lattice

    Full text link
    We show that N=(2,2) SU(N) super Yang-Mills theory on lattice does not have sign problem in the continuum limit, that is, under the phase-quenched simulation phase of the determinant localizes to 1 and hence the phase-quench approximation becomes exact. Among several formulations, we study models by Cohen-Kaplan-Katz-Unsal (CKKU) and by Sugino. We confirm that the sign problem is absent in both models and that they converge to the identical continuum limit without fine tuning. We provide a simple explanation why previous works by other authors, which claim an existence of the sign problem, do not capture the continuum physics.Comment: 27 pages, 24 figures; v2: comments and references added; v3: figures on U(1) mass independence and references added, to appear in JHE

    Isospin Character of the Pygmy Dipole Resonance in 124Sn

    Full text link
    The pygmy dipole resonance has been studied in the proton-magic nucleus 124Sn with the (a,a'g) coincidence method at E=136 MeV. The comparison with results of photon-scattering experiments reveals a splitting into two components with different structure: one group of states which is excited in (a,a'g) as well as in (g,g') reactions and a group of states at higher energies which is only excited in (g,g') reactions. Calculations with the self-consistent relativistic quasiparticle time-blocking approximation and the quasiparticle phonon model are in qualitative agreement with the experimental results and predict a low-lying isoscalar component dominated by neutron-skin oscillations and a higher-lying more isovector component on the tail of the giant dipole resonance
    • …
    corecore