1,452 research outputs found

    A User's Guide to the Encyclopedia of DNA Elements (ENCODE)

    Get PDF
    The mission of the Encyclopedia of DNA Elements (ENCODE) Project is to enable the scientific and medical communities to interpret the human genome sequence and apply it to understand human biology and improve health. The ENCODE Consortium is integrating multiple technologies and approaches in a collective effort to discover and define the functional elements encoded in the human genome, including genes, transcripts, and transcriptional regulatory regions, together with their attendant chromatin states and DNA methylation patterns. In the process, standards to ensure high-quality data have been implemented, and novel algorithms have been developed to facilitate analysis. Data and derived results are made available through a freely accessible database. Here we provide an overview of the project and the resources it is generating and illustrate the application of ENCODE data to interpret the human genome

    Perspectives on ENCODE

    Get PDF
    The Encylopedia of DNA Elements (ENCODE) Project launched in 2003 with the long-term goal of developing a comprehensive map of functional elements in the human genome. These included genes, biochemical regions associated with gene regulation (for example, transcription factor binding sites, open chromatin, and histone marks) and transcript isoforms. The marks serve as sites for candidate cis-regulatory elements (cCREs) that may serve functional roles in regulating gene expression(1). The project has been extended to model organisms, particularly the mouse. In the third phase of ENCODE, nearly a million and more than 300,000 cCRE annotations have been generated for human and mouse, respectively, and these have provided a valuable resource for the scientific community

    Global Discriminative Learning for Higher-Accuracy Computational Gene Prediction

    Get PDF
    Most ab initio gene predictors use a probabilistic sequence model, typically a hidden Markov model, to combine separately trained models of genomic signals and content. By combining separate models of relevant genomic features, such gene predictors can exploit small training sets and incomplete annotations, and can be trained fairly efficiently. However, that type of piecewise training does not optimize prediction accuracy and has difficulty in accounting for statistical dependencies among different parts of the gene model. With genomic information being created at an ever-increasing rate, it is worth investigating alternative approaches in which many different types of genomic evidence, with complex statistical dependencies, can be integrated by discriminative learning to maximize annotation accuracy. Among discriminative learning methods, large-margin classifiers have become prominent because of the success of support vector machines (SVM) in many classification tasks. We describe CRAIG, a new program for ab initio gene prediction based on a conditional random field model with semi-Markov structure that is trained with an online large-margin algorithm related to multiclass SVMs. Our experiments on benchmark vertebrate datasets and on regions from the ENCODE project show significant improvements in prediction accuracy over published gene predictors that use intrinsic features only, particularly at the gene level and on genes with long introns

    Identification and Analysis of Genes and Pseudogenes within Duplicated Regions in the Human and Mouse Genomes

    Get PDF
    The identification and classification of genes and pseudogenes in duplicated regions still constitutes a challenge for standard automated genome annotation procedures. Using an integrated homology and orthology analysis independent of current gene annotation, we have identified 9,484 and 9,017 gene duplicates in human and mouse, respectively. On the basis of the integrity of their coding regions, we have classified them into functional and inactive duplicates, allowing us to define the first consistent and comprehensive collection of 1,811 human and 1,581 mouse unprocessed pseudogenes. Furthermore, of the total of 14,172 human and mouse duplicates predicted to be functional genes, as many as 420 are not included in current reference gene databases and therefore correspond to likely novel mammalian genes. Some of these correspond to partial duplicates with less than half of the length of the original source genes, yet they are conserved and syntenic among different mammalian lineages. The genes and unprocessed pseudogenes obtained here will enable further studies on the mechanisms involved in gene duplication as well as of the fate of duplicated genes

    Hardy-Weinberg Equilibrium Testing of Biological Ascertainment for Mendelian Randomization Studies

    Get PDF
    Mendelian randomization (MR) permits causal inference between exposures and a disease. It can be compared with randomized controlled trials. Whereas in a randomized controlled trial the randomization occurs at entry into the trial, in MR the randomization occurs during gamete formation and conception. Several factors, including time since conception and sampling variation, are relevant to the interpretation of an MR test. Particularly important is consideration of the “missingness” of genotypes that can be originated by chance, genotyping errors, or clinical ascertainment. Testing for Hardy-Weinberg equilibrium (HWE) is a genetic approach that permits evaluation of missingness. In this paper, the authors demonstrate evidence of nonconformity with HWE in real data. They also perform simulations to characterize the sensitivity of HWE tests to missingness. Unresolved missingness could lead to a false rejection of causality in an MR investigation of trait-disease association. These results indicate that large-scale studies, very high quality genotyping data, and detailed knowledge of the life-course genetics of the alleles/genotypes studied will largely mitigate this risk. The authors also present a Web program (http://www.oege.org/software/hwe-mr-calc.shtml) for estimating possible missingness and an approach to evaluating missingness under different genetic models

    A User\u27s Guide to the Encyclopedia of DNA Elements (ENCODE)

    Get PDF
    The mission of the Encyclopedia of DNA Elements (ENCODE) Project is to enable the scientific and medical communities to interpret the human genome sequence and apply it to understand human biology and improve health. The ENCODE Consortium is integrating multiple technologies and approaches in a collective effort to discover and define the functional elements encoded in the human genome, including genes, transcripts, and transcriptional regulatory regions, together with their attendant chromatin states and DNA methylation patterns. In the process, standards to ensure high-quality data have been implemented, and novel algorithms have been developed to facilitate analysis. Data and derived results are made available through a freely accessible database. Here we provide an overview of the project and the resources it is generating and illustrate the application of ENCODE data to interpret the human genome

    Modeling associations between genetic markers using Bayesian networks

    Get PDF
    Motivation: Understanding the patterns of association between polymorphisms at different loci in a population (linkage disequilibrium, LD) is of fundamental importance in various genetic studies. Many coefficients were proposed for measuring the degree of LD, but they provide only a static view of the current LD structure. Generative models (GMs) were proposed to go beyond these measures, giving not only a description of the actual LD structure but also a tool to help understanding the process that generated such structure. GMs based in coalescent theory have been the most appealing because they link LD to evolutionary factors. Nevertheless, the inference and parameter estimation of such models is still computationally challenging

    Novel Bayes Factors That Capture Expert Uncertainty in Prior Density Specification in Genetic Association Studies.

    Get PDF
    Bayes factors (BFs) are becoming increasingly important tools in genetic association studies, partly because they provide a natural framework for including prior information. The Wakefield BF (WBF) approximation is easy to calculate and assumes a normal prior on the log odds ratio (logOR) with a mean of zero. However, the prior variance (W) must be specified. Because of the potentially high sensitivity of the WBF to the choice of W, we propose several new BF approximations with logOR ∼N(0,W), but allow W to take a probability distribution rather than a fixed value. We provide several prior distributions for W which lead to BFs that can be calculated easily in freely available software packages. These priors allow a wide range of densities for W and provide considerable flexibility. We examine some properties of the priors and BFs and show how to determine the most appropriate prior based on elicited quantiles of the prior odds ratio (OR). We show by simulation that our novel BFs have superior true-positive rates at low false-positive rates compared to those from both P-value and WBF analyses across a range of sample sizes and ORs. We give an example of utilizing our BFs to fine-map the CASP8 region using genotype data on approximately 46,000 breast cancer case and 43,000 healthy control samples from the Collaborative Oncological Gene-environment Study (COGS) Consortium, and compare the single-nucleotide polymorphism ranks to those obtained using WBFs and P-values from univariate logistic regression

    Modeling associations between genetic markers using Bayesian networks

    Get PDF
    Motivation: Understanding the patterns of association between polymorphisms at different loci in a population (linkage disequilibrium, LD) is of fundamental importance in various genetic studies. Many coefficients were proposed for measuring the degree of LD, but they provide only a static view of the current LD structure. Generative models (GMs) were proposed to go beyond these measures, giving not only a description of the actual LD structure but also a tool to help understanding the process that generated such structure. GMs based in coalescent theory have been the most appealing because they link LD to evolutionary factors. Nevertheless, the inference and parameter estimation of such models is still computationally challenging
    corecore