81 research outputs found

    MyosinVIIa Interacts with Twinfilin-2 at the Tips of Mechanosensory Stereocilia in the Inner Ear

    Get PDF
    In vertebrates hearing is dependent upon the microvilli-like mechanosensory stereocilia and their length gradation. The staircase-like organization of the stereocilia bundle is dynamically maintained by variable actin turnover rates. Two unconventional myosins were previously implicated in stereocilia length regulation but the mechanisms of their action remain unknown. MyosinXVa is expressed in stereocilia tips at levels proportional to stereocilia length and its absence produces staircase-like bundles of very short stereocilia. MyosinVIIa localizes to the tips of the shorter stereocilia within bundles, and when absent, the stereocilia are abnormally long. We show here that myosinVIIa interacts with twinfilin-2, an actin binding protein, which inhibits actin polymerization at the barbed end of the filament, and that twinfilin localization in stereocilia overlaps with myosinVIIa. Exogenous expression of myosinVIIa in fibroblasts results in a reduced number of filopodia and promotes accumulation of twinfilin-2 at the filopodia tips. We hypothesize that the newly described interaction between myosinVIIa and twinfilin-2 is responsible for the establishment and maintenance of slower rates of actin turnover in shorter stereocilia, and that interplay between complexes of myosinVIIa/twinfilin-2 and myosinXVa/whirlin is responsible for stereocilia length gradation within the bundle staircase

    Potential health impacts of heavy metals on HIV-infected population in USA.

    Get PDF
    Noninfectious comorbidities such as cardiovascular diseases have become increasingly prevalent and occur earlier in life in persons with HIV infection. Despite the emerging body of literature linking environmental exposures to chronic disease outcomes in the general population, the impacts of environmental exposures have received little attention in HIV-infected population. The aim of this study is to investigate whether individuals living with HIV have elevated prevalence of heavy metals compared to non-HIV infected individuals in United States. We used the National Health and Nutrition Examination Survey (NHANES) 2003-2010 to compare exposures to heavy metals including cadmium, lead, and total mercury in HIV infected and non-HIV infected subjects. In this cross-sectional study, we found that HIV-infected individuals had higher concentrations of all heavy metals than the non-HIV infected group. In a multivariate linear regression model, HIV status was significantly associated with increased blood cadmium (p=0.03) after adjusting for age, sex, race, education, poverty income ratio, and smoking. However, HIV status was not statistically associated with lead or mercury levels after adjusting for the same covariates. Our findings suggest that HIV-infected patients might be significantly more exposed to cadmium compared to non-HIV infected individuals which could contribute to higher prevalence of chronic diseases among HIV-infected subjects. Further research is warranted to identify sources of exposure and to understand more about specific health outcomes

    Lpd depletion reveals that SRF specifies radial versus tangential migration of pyramidal neurons

    Get PDF
    During corticogenesis, pyramidal neurons (~80% of cortical neurons) arise from the ventricular zone, pass through a multipolar stage to become bipolar and attach to radial glia[superscript 1, 2], and then migrate to their proper position within the cortex[superscript 1, 3]. As pyramidal neurons migrate radially, they remain attached to their glial substrate as they pass through the subventricular and intermediate zones, regions rich in tangentially migrating interneurons and axon fibre tracts. We examined the role of lamellipodin (Lpd), a homologue of a key regulator of neuronal migration and polarization in Caenorhabditis elegans, in corticogenesis. Lpd depletion caused bipolar pyramidal neurons to adopt a tangential, rather than radial-glial, migration mode without affecting cell fate. Mechanistically, Lpd depletion reduced the activity of SRF, a transcription factor regulated by changes in the ratio of polymerized to unpolymerized actin. Therefore, Lpd depletion exposes a role for SRF in directing pyramidal neurons to select a radial migration pathway along glia rather than a tangential migration mode.Ruth L. Kirschstein National Research Service Award (grant F32- GM074507)National Institutes of Health (U.S.) (grant # GM068678

    Immunological Responses and Actin Dynamics in Macrophages Are Controlled by N-Cofilin but Are Independent from ADF

    Get PDF
    Dynamic changes in the actin cytoskeleton are essential for immune cell function and a number of immune deficiencies have been linked to mutations, which disturb the actin cytoskeleton. In macrophages and dendritic cells, actin remodelling is critical for motility, phagocytosis and antigen presentation, however the actin binding proteins, which control antigen presentation have been poorly characterized. Here we dissect the specific roles of the family of ADF/cofilin F-actin depolymerizing factors in macrophages and in local immune responses

    Sex Ratio at Birth and Mortality Rates Are Negatively Related in Humans

    Get PDF
    Evolutionary theory posits that resource availability and parental investment ability could signal offspring sex selection, in order to maximize reproductive returns. Non-human studies have provided evidence for this phenomenon, and maternal condition around the time of conception has been identified as most important factor that influence offspring sex selection. However, studies on humans have reported inconsistent results, mostly due to use of disparate measures as indicators of maternal condition. In the present study, the cross-cultural differences in human natal sex ratio were analyzed with respect to indirect measures of condition namely, life expectancy and mortality rate. Multiple regression modeling suggested that mortality rates have distinct predictive power independent of cross-cultural differences in fertility, wealth and latitude that were earlier shown to predict sex ratio at birth. These findings suggest that sex ratio variation in humans may relate to differences in parental and environmental conditions

    Spiral ligament fibrocyte-derived MCP-1/CCL2 contributes to inner ear inflammation secondary to nontypeable H. influenzae-induced otitis media

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Otitis media (OM), one of the most common pediatric infectious diseases, causes inner ear inflammation resulting in vertigo and sensorineural hearing loss. Previously, we showed that spiral ligament fibrocytes (SLFs) recognize OM pathogens and up-regulate chemokines. Here, we aim to determine a key molecule derived from SLFs, contributing to OM-induced inner ear inflammation.</p> <p>Methods</p> <p>Live NTHI was injected into the murine middle ear through the tympanic membrane, and histological analysis was performed after harvesting the temporal bones. Migration assays were conducted using the conditioned medium of NTHI-exposed SLFs with and without inhibition of MCP-1/CCL2 and CCR2. qRT-PCR analysis was performed to demonstrate a compensatory up-regulation of alternative genes induced by the targeting of MCP-1/CCL2 or CCR2.</p> <p>Results</p> <p>Transtympanic inoculation of live NTHI developed serous and purulent labyrinthitis after clearance of OM. THP-1 cells actively migrated and invaded the extracellular matrix in response to the conditioned medium of NTHI-exposed SLFs. This migratory activity was markedly inhibited by the viral CC chemokine inhibitor and the deficiency of MCP-1/CCL2, indicating that MCP-1/CCL2 is a main attractant of THP-1 cells among the SLF-derived molecules. We further demonstrated that CCR2 deficiency inhibits migration of monocyte-like cells in response to NTHI-induced SLF-derived molecules. Immunolabeling showed an increase in MCP-1/CCL2 expression in the cochlear lateral wall of the NTHI-inoculated group. Contrary to the <it>in vitro </it>data, deficiency of MCP-1/CCL2 or CCR2 did not inhibit OM-induced inner ear inflammation <it>in vivo</it>. We demonstrated that targeting MCP-1/CCL2 enhances NTHI-induced up-regulation of MCP-2/CCL8 in SLFs and up-regulates the basal expression of CCR2 in the splenocytes. We also found that targeting CCR2 enhances NTHI-induced up-regulation of MCP-1/CCL2 in SLFs.</p> <p>Conclusions</p> <p>Taken together, we suggest that NTHI-induced SLF-derived MCP-1/CCL2 is a key molecule contributing to inner ear inflammation through CCR2-mediated recruitment of monocytes. However, deficiency of MCP-1/CCL2 or CCR2 alone was limited to inhibit OM-induced inner ear inflammation due to compensation of alternative genes.</p

    Drug discovery: Insights from the invertebrate Caenorhabditis elegans

    Get PDF
    Therapeutic drug development is a long, expensive, and complex process that usually takes 12–15 years. In the early phases of drug discovery, in particular, there is a growing need for animal models that ensure the reduction in both cost and time. Caenorhabditis elegans has been traditionally used to address fundamental aspects of key biological processes, such as apoptosis, aging, and gene expression regulation. During the last decade, with the advent of large-scale platforms for screenings, this invertebrate has also emerged as an essential tool in the pharmaceutical research industry to identify novel drugs and drug targets. In this review, we discuss the reasons why C. elegans has been positioned as an outstanding cost-effective option for drug discovery, highlighting both the advantages and drawbacks of this model. Particular attention is paid to the suitability of this nematode in large-scale genetic and pharmacological screenings. High-throughput screenings in C. elegans have indeed contributed to the breakthrough of a wide variety of candidate compounds involved in extensive fields including neurodegeneration, pathogen infections and metabolic disorders. The versatility of this nematode, which enables its instrumentation as a model of human diseases, is another attribute also herein underscored. As illustrative examples, we discuss the utility of C. elegans models of both human neurodegenerative diseases and parasitic nematodes in the drug discovery industry. Summing up, this review aims to demonstrate the impact of C. elegans models on the drug discovery pipeline.Fil: Giunti, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; ArgentinaFil: Andersen, Natalia Denise. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; ArgentinaFil: Rayes, Diego Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; ArgentinaFil: de Rosa, Maria Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; Argentin

    Reactions of pulmonary emphysema patients before and after VRS - Forcusing on the rehabilitation, activity, surgery -

    Get PDF
    今まで内科的治療が主体であった肺気腫に対して,近年外科的治療(Volume Reduction Surgery 以後VRSと略す)が行われるようになった。VRSを受ける患者の看護では,手術前後において, リハビリテーション(以後リハビリと略す)や機能回復に向けてのケアが必要不可欠とされる。そこで,本研究は肺気腫患者の適切な看護援助を検討するために,手術前後に示す肺気腫患者のリハビリや活動に対する反応を明らかにすることを目的とした。対象者は当病棟に入院している肺気腫患者8名(VRS手術前8名,手術後はそのうちの6名である)で, リハビリ, 日常生活活動,呼吸,手術などについて,面接ならびに観察による調査を行った。分析の結果,手術前においてリハビリでは≪義務感≫,頑張って行えば呼吸が楽になるという≪期待感≫,≪サポート≫,≪不安≫が,活動では≪活動の制限≫,手術では呼吸が楽になるのではという≪期待感≫,≪おまかせ≫,≪いちかばちかの賭け≫,≪不安≫,≪回復に向けての欲求の高まり≫が明らかになった。手術後においてリハビリでは≪呼吸が楽になるための手段≫が, 日常生活活動では≪今の状態よりは良くなると いう期待感≫が,手術では≪達成感≫ と≪身体的苦痛≫が,将来については≪ささやかな欲求≫が明らかになった。Pulmonary emphysema has been mainly treated with medicine, but recently VRS(volume reduction surgery) has been receiving much attention. In nursing care for VRS patients, it is important to help the patient improve his/her daily activities and recover physical function smoothly after surgery. The purpose of this study is to clarify the reactions of pulmonary emphysema patients before and after VRS for appropriate nursing. The subjects were eight pulmonary emphysema patients at a ward in Okayama University Hospital, but six of them completed both before and after VRS data collection. The data were collected by interview and observation, and from medical and nursing records. Contents of the interview included rehabilitation, daily activities, respiratory symptoms, operative stress, and so on. The results were as follows : , , , and on rehabilitation, on activity, , , , , and on surgery were extracted as pre-operative patients's reactions. on rehabilitation, on activity, and on surgery, on future were extracted as post-operative patients's reactions
    corecore