199 research outputs found

    Voltage-gated calcium channel blockers for psychiatric disorders: genomic reappraisal

    Get PDF
    We reappraise the psychiatric potential of calcium channel blockers (CCBs). First, voltage-gated calcium channels are risk genes for several disorders. Second, use of CCBs is associated with altered psychiatric risks and outcomes. Third, research shows there is an opportunity for brain-selective CCBs, which are better suited to psychiatric indications

    Copy number elevation of 22q11.2 genes arrests the developmental maturation of working memory capacity and adult hippocampal neurogenesis

    Get PDF
    Working memory capacity, a critical component of executive function, expands developmentally from childhood through adulthood. Anomalies in this developmental process are seen in individuals with autism spectrum disorder (ASD), schizophrenia and intellectual disabilities (ID), implicating this atypical process in the trajectory of developmental neuropsychiatric disorders. However, the cellular and neuronal substrates underlying this process are not understood. Duplication and triplication of copy number variants of 22q11.2 are consistently and robustly associated with cognitive deficits of ASD and ID in humans, and overexpression of small 22q11.2 segments recapitulates dimensional aspects of developmental neuropsychiatric disorders in mice. We capitalized on these two lines of evidence to delve into the cellular substrates for this atypical development of working memory. Using a region- and cell-type-selective gene expression approach, we demonstrated that copy number elevations of catechol-O-methyl-transferase (COMT) or Tbx1, two genes encoded in the two small 22q11.2 segments, in adult neural stem/progenitor cells in the hippocampus prevents the developmental maturation of working memory capacity in mice. Moreover, copy number elevations of COMT or Tbx1 reduced the proliferation of adult neural stem/progenitor cells in a cell-autonomous manner in vitro and migration of their progenies in the hippocampus granular layer in vivo. Our data provide evidence for the novel hypothesis that copy number elevations of these 22q11.2 genes alter the developmental trajectory of working memory capacity via suboptimal adult neurogenesis in the hippocampus.Peer reviewe

    Methamphetamine withdrawal induces activation of CRF neurons in the brain stress system in parallel with an increased activity of cardiac sympathetic pathways.

    Get PDF
    Methamphetamine (METH) addiction is a major public health problem in some countries. There is evidence to suggest that METH use is associated with increased risk of developing cardiovascular problems. Here, we investigated the effects of chronic METH administration and withdrawal on the activation of the brain stress system and cardiac sympathetic pathways. Mice were treated with METH (2 mg/kg, i.p.) for 10 days and left to spontaneous withdraw for 7 days. The number of corticotrophin-releasing factor (CRF), c-Fos, and CRF/c-Fos neurons was measured by immunohistochemistry in the paraventricular nucleus of the hypothalamus (PVN) and the oval region of the bed nucleus of stria terminalis (ovBNST), two regions associated with cardiac sympathetic control. In parallel, levels of catechol-o-methyl-transferase (COMT), tyrosine hydroxylase (TH), and heat shock protein 27 (Hsp27) were measured in the heart. In the brain, chronic-METH treatment enhanced the number of c-Fos neurons and the CRF neurons with c-Fos signal (CRF+/c-Fos+) in PVN and ovBNST. METH withdrawal increased the number of CRF+neurons. In the heart, METH administration induced an increase in soluble (S)-COMT and membrane-bound (MB)-COMT without changes in phospho (p)-TH, Hsp27, or pHsp27. Similarly, METH withdrawal increased the expression of S- and MB-COMT. In contrast to chronic treatment, METH withdrawal enhanced levels of (p)TH and (p)Hsp27 in the heart. Overall, our results demonstrate that chronic METH administration and withdrawal activate the brain CRF systems associated with the heart sympathetic control and point towards a METH withdrawal induced activation of sympathetic pathways in the heart. Our findings provide further insight in the mechanism underlining the cardiovascular risk associated with METH use and proposes targets for its treatment

    ZNF804a Regulates Expression of the Schizophrenia-Associated Genes PRSS16, COMT, PDE4B, and DRD2

    Get PDF
    ZNF804a was identified by a genome-wide association study (GWAS) in which a single nucleotide polymorphism (SNP rs1344706) in ZNF804a reached genome-wide statistical significance for association with a combined diagnosis of schizophrenia (SZ) and bipolar disorder. Although the molecular function of ZNF804a is unknown, the amino acid sequence is predicted to contain a C2H2-type zinc-finger domain and suggests ZNF804a plays a role in DNA binding and transcription. Here, we confirm that ZNF804a directly contributes to transcriptional control by regulating the expression of several SZ associated genes and directly interacts with chromatin proximal to the promoter regions of PRSS16 and COMT, the two genes we find upregulated by ZNF804a. Using immunochemistry we establish that ZNF804a is localized to the nucleus of rat neural progenitor cells in culture and in vivo. We demonstrate that expression of ZNF804a results in a significant increase in transcript levels of PRSS16 and COMT, relative to GFP transfected controls, and a statistically significant decrease in transcript levels of PDE4B and DRD2. Furthermore, we show using chromatin immunoprecipitation assays (ChIP) that both epitope-tagged and endogenous ZNF804a directly interacts with the promoter regions of PRSS16 and COMT, suggesting a direct upregulation of transcription by ZNF804a on the expression of these genes. These results are the first to confirm that ZNF804a regulates transcription levels of four SZ associated genes, and binds to chromatin proximal to promoters of two SZ genes. These results suggest a model where ZNF804a may modulate a transcriptional network of SZ associated genes

    A Transposon in Comt Generates mRNA Variants and Causes Widespread Expression and Behavioral Differences among Mice

    Get PDF
    Background: Catechol-O-methyltransferase (COMT) is a key enzyme responsible for the degradation of dopamine and norepinephrine. COMT activity influences cognitive and emotional states in humans and aggression and drug responses in mice. This study identifies the key sequence variant that leads to differences in Comt mRNA and protein levels among mice, and that modulates synaptic function and pharmacological and behavioral traits. Methodology/Principal Findings: We examined Comt expression in multiple tissues in over 100 diverse strains and several genetic crosses. Differences in expression map back to Comt and are generated by a 230 nt insertion of a B2 short interspersed element (B2 SINE) in the proximal 39 UTR of Comt in C57BL/6J. This transposon introduces a premature polyadenylation signal and creates a short 39 UTR isoform. The B2 SINE is shared by a subset of strains, including C57BL/6J

    Association between Catechol-O-Methyltrasferase Val108/158Met Genotype and Prefrontal Hemodynamic Response in Schizophrenia

    Get PDF
    BACKGROUND:"Imaging genetics" studies have shown that brain function by neuroimaging is a sensitive intermediate phenotype that bridges the gap between genes and psychiatric conditions. Although the evidence of association between functional val108/158met polymorphism of the catechol-O-methyltransferase gene (COMT) and increasing risk for developing schizophrenia from genetic association studies remains to be elucidated, one of the most topical findings from imaging genetics studies is the association between COMT genotype and prefrontal function in schizophrenia. The next important step in the translational approach is to establish a useful neuroimaging tool in clinical settings that is sensitive to COMT variation, so that the clinician could use the index to predict clinical response such as improvement in cognitive dysfunction by medication. Here, we investigated spatiotemporal characteristics of the association between prefrontal hemodynamic activation and the COMT genotype using a noninvasive neuroimaging technique, near-infrared spectroscopy (NIRS). METHODOLOGY/PRINCIPAL FINDINGS:Study participants included 45 patients with schizophrenia and 60 healthy controls matched for age and gender. Signals that are assumed to reflect regional cerebral blood volume were monitored over prefrontal regions from 52-channel NIRS and compared between two COMT genotype subgroups (Met carriers and Val/Val individuals) matched for age, gender, premorbid IQ, and task performance. The [oxy-Hb] increase in the Met carriers during the verbal fluency task was significantly greater than that in the Val/Val individuals in the frontopolar prefrontal cortex of patients with schizophrenia, although neither medication nor clinical symptoms differed significantly between the two subgroups. These differences were not found to be significant in healthy controls. CONCLUSIONS/SIGNIFICANCE:These data suggest that the prefrontal NIRS signals can noninvasively detect the impact of COMT variation in patients with schizophrenia. NIRS may be a promising candidate translational approach in psychiatric neuroimaging

    How Cannabis Causes Paranoia: Using the Intravenous Administration of ∆^{9}-Tetrahydrocannabinol (THC) to Identify Key Cognitive Mechanisms Leading to Paranoia

    Get PDF
    Paranoia is receiving increasing attention in its own right, since it is a central experience of psychotic disorders and a marker of the health of a society. Paranoia is associated with use of the most commonly taken illicit drug, cannabis. The objective was to determine whether the principal psychoactive ingredient of cannabis—∆ 9 -tetrahydrocannabinol (THC)—causes paranoia and to use the drug as a probe to identify key cognitive mechanisms underlying paranoia. A randomized, placebo-controlled, between-groups test of the effects of intravenous THC was conducted. A total of 121 individuals with paranoid ideation were randomized to receive placebo, THC, or THC preceded by a cognitive awareness condition. Paranoia was assessed extensively via a real social situation, an immersive virtual reality experiment, and standard self-report and interviewer measures. Putative causal factors were assessed. Principal components analysis was used to create a composite paranoia score and composite causal variables to be tested in a mediation analysis. THC significantly increased paranoia, negative affect (anxiety, worry, depression, negative thoughts about the self), and a range of anomalous experiences, and reduced working memory capacity. The increase in negative affect and in anomalous experiences fully accounted for the increase in paranoia. Working memory changes did not lead to paranoia. Making participants aware of the effects of THC had little impact. In this largest study of intravenous THC, it was definitively demonstrated that the drug triggers paranoid thoughts in vulnerable individuals. The most likely mechanism of action causing paranoia was the generation of negative affect and anomalous experiences

    Interaction between COMT rs5993883 and second generation antipsychotics is linked to decreases in verbal cognition and cognitive control in bipolar disorder

    Get PDF
    Abstract Background Second generation antipsychotics (SGAs) are increasingly utilized in Bipolar Disorder (BD) but are potentially associated with cognitive side effects. Also linked to cognitive deficits associated with SGA-treatment are catechol-O-methyltransferase (COMT) gene variants. In this study, we examine the relationship between cognition in SGA use and COMT rs5993883 in cohort sample of subjects with BD. Methods Interactions between SGA-treatment and COMT rs5993883 genotype on cognition was tested using a battery of neuropsychological tests performed in cross-sectional study of 246 bipolar subjects. Results The mean age of our sample was 40.15 years and was comprised of 70 % female subjects. Significant demographic differences included gender, hospitalizations, benzodiazepine/antidepressant use and BD-type diagnosis. Linear regressions showed that the COMT rs5993883 GG genotype predicted lower verbal learning (p = 0.0006) and memory (p = 0.0026) scores, and lower scores on a cognitive control task (p = 0.004) in SGA-treated subjects. Interestingly, COMT GT- or TT-variants showed no intergroup cognitive differences. Further analysis revealed an interaction between SGA-COMT GG-genotype for verbal learning (p = 0.028), verbal memory (p = 0.026) and cognitive control (p = 0.0005). Conclusions This investigation contributes to previous work demonstrating links between cognition, SGA-treatment and COMT rs5993883 in BD subjects. Our analysis shows significant associations between cognitive domains such as verbal-cognition and cognitive control in SGA-treated subjects carrying the COMT rs5993883 GG-genotype. Prospective studies are needed to evaluate the clinical significance of these findings.http://deepblue.lib.umich.edu/bitstream/2027.42/134550/1/40359_2016_Article_118.pd
    corecore